题目内容

1.已知$tanα=\frac{1}{3}$,求下列各式的值:
(1)$\frac{sinα+3cosα}{sinα-cosα}$;    
(2)cos2α-sin2α.

分析 (1)原式分子分母除以cosα变形后,将tanα的值代入计算即可求出值;
(2)原式分母看做“1”,利用同角三角函数间的基本关系化简,将tanα的值代入计算即可求出值.

解答 解:(1)∵$tanα=\frac{1}{3}$,
∴$\frac{sinα+3cosα}{sinα-cosα}$=$\frac{tanα+3}{tanα-1}$=$\frac{\frac{1}{3}+3}{\frac{1}{3}-1}$=-5;    
(2)cos2α-sin2α=$\frac{co{s}^{2}α-2sinαcosα}{co{s}^{2}α+si{n}^{2}α}$=$\frac{1-2tanα}{1+ta{n}^{2}α}$=$\frac{1-2×\frac{1}{3}}{1+(\frac{1}{3})^{2}}$=$\frac{3}{10}$.

点评 此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网