题目内容

2.已知过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)右焦点F2的直线y=$\sqrt{3}$(x-c)与双曲线在第一象限交于点A,点F1为左焦点,且($\overrightarrow{{F}_{2}{F}_{1}}$+$\overrightarrow{{F}_{2}A}$)•$\overrightarrow{{F}_{1}A}$=0,则此双曲线的离心率为(  )
A.$\frac{1+\sqrt{3}}{2}$B.$\frac{1+\sqrt{5}}{2}$C.$\frac{3}{2}$D.$\frac{1+\sqrt{2}}{2}$

分析 求出A的坐标,代入双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1,可得$\frac{4{c}^{2}}{{a}^{2}}$-$\frac{3{c}^{2}}{{b}^{2}}$=1,即可求出双曲线的离心率.

解答 解:由题意,|F1F2|=|F2A|,
∵过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)右焦点F2的直线y=$\sqrt{3}$(x-c),
∴A(2c,$\sqrt{3}$c),
代入双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1,可得$\frac{4{c}^{2}}{{a}^{2}}$-$\frac{3{c}^{2}}{{b}^{2}}$=1,
∴4c2b2-3a2c2=a2b2
∴4c2(c2-a2)-3a2c2=a2(c2-a2),
∴4e4-8e2+1=0
∵e>1,
∴e=$\frac{1+\sqrt{3}}{2}$.
故选:A.

点评 本题考查双曲线的离心率,考查向量知识的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网