题目内容
17.已知数列{an}满足$\frac{{a}_{1}}{1}$+$\frac{{a}_{2}}{2}$+…+$\frac{{a}_{n}}{n}$=$\frac{{n}^{2}}{2}$+$\frac{n}{2}$.(1)求{an}的通项公式;
(2)若bn=$\frac{n+2}{{a}_{n}{a}_{n+1}}$,数列{bn}的前n项和为Sn,求证:Sn<1.
分析 (1)数列{an}满足$\frac{{a}_{1}}{1}$+$\frac{{a}_{2}}{2}$+…+$\frac{{a}_{n}}{n}$=$\frac{{n}^{2}}{2}$+$\frac{n}{2}$.当n=1时,a1=1;当n≥2时,可得$\frac{{a}_{n}}{n}$=$\frac{{n}^{2}}{2}$+$\frac{n}{2}$-$\frac{(n-1)^{2}}{2}$-$\frac{n-1}{2}$,即可得出.
(2)bn=$\frac{n+2}{{a}_{n}{a}_{n+1}}$=$\frac{n+2}{{n}^{2}(n+1)^{2}}$=$\frac{n+2}{2n+1}$$(\frac{1}{{n}^{2}}-\frac{1}{(n+1)^{2}})$≤$\frac{1}{{n}^{2}}-\frac{1}{(n+1)^{2}}$,(n+2≤2n+1).即可得出.
解答 (1)解:∵数列{an}满足$\frac{{a}_{1}}{1}$+$\frac{{a}_{2}}{2}$+…+$\frac{{a}_{n}}{n}$=$\frac{{n}^{2}}{2}$+$\frac{n}{2}$.
∴当n=1时,a1=1;
当n≥2时,$\frac{{a}_{1}}{1}$+$\frac{{a}_{2}}{2}$+…$+\frac{{a}_{n-1}}{n-1}$=$\frac{(n-1)^{2}}{2}$+$\frac{n-1}{2}$.
∴$\frac{{a}_{n}}{n}$=$\frac{{n}^{2}}{2}$+$\frac{n}{2}$-$\frac{(n-1)^{2}}{2}$-$\frac{n-1}{2}$=n.
∴an=n2.
(2)证明:bn=$\frac{n+2}{{a}_{n}{a}_{n+1}}$=$\frac{n+2}{{n}^{2}(n+1)^{2}}$=$\frac{n+2}{2n+1}$$(\frac{1}{{n}^{2}}-\frac{1}{(n+1)^{2}})$≤$\frac{1}{{n}^{2}}-\frac{1}{(n+1)^{2}}$,(n+2≤2n+1).
∴数列{bn}的前n项和为Sn≤$(1-\frac{1}{{2}^{2}})$+$(\frac{1}{{2}^{2}}-\frac{1}{{3}^{2}})$+…+$[\frac{1}{{n}^{2}}-\frac{1}{(n+1)^{2}}]$=1-$\frac{1}{(n+1)^{2}}$<1
∴Sn<1.
点评 本题考查了“裂项求和”方法、递推关系的应用,考查了推理能力与计算能力,属于中档题.
| A. | (0,$\sqrt{2}$) | B. | (1,2) | C. | ($\frac{2\sqrt{3}}{3}$,2) | D. | ($\frac{2\sqrt{3}}{3}$,$\sqrt{2}$) |
| A. | $\frac{1+\sqrt{3}}{2}$ | B. | $\frac{1+\sqrt{5}}{2}$ | C. | $\frac{3}{2}$ | D. | $\frac{1+\sqrt{2}}{2}$ |