题目内容
已知x,y满足
,则z=2x+y的最小值是( )
|
| A、3 | ||
| B、-3 | ||
C、
| ||
| D、0 |
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用目标函数的几何意义,即可求最小值.
解答:
解:作出不等式组对应的平面区域如图:(阴影部分).
由z=2x+y得y=-2x+z,
平移直线y=-2x+z,
由图象可知当直线y=-2x+z经过点A时,直线y=-2x+z的截距最小,
此时z最小.
由
,解得
,即A(-1,-1),
代入目标函数z=2x+y得z=-1×2-1=-3.
即目标函数z=2x+y的最小值为-3.
故选:B.
由z=2x+y得y=-2x+z,
平移直线y=-2x+z,
由图象可知当直线y=-2x+z经过点A时,直线y=-2x+z的截距最小,
此时z最小.
由
|
|
代入目标函数z=2x+y得z=-1×2-1=-3.
即目标函数z=2x+y的最小值为-3.
故选:B.
点评:本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.
练习册系列答案
相关题目
以椭圆
+
=1的长轴端点为焦点、以椭圆焦点为顶点的双曲线方程为( )
| x2 |
| 4 |
| y2 |
| 2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
在棱长为1的正方体ABCD-A1B1C1D1中,E,F分别是棱A1D1,C1D1的中点,N为线段B1C的中点,若点P,M分别为线段D1B,EF上的动点,则PM+PN的最小值为( )

| A、1 | ||||||
B、
| ||||||
C、
| ||||||
D、
|
对于函数f(x),若?a,b,c∈R,f(a),f(b),f(c)都是某一三角形的三边长,则称f(x)为“保三角形函数”.以下说法正确的是( )
| A、f(x)=1(x∈R)不是“保三角形函数” | ||
B、若定义在R上的函数f(x)的值域是[
| ||
C、f(x)=
| ||
| D、“保三角形函数”一定是单调函数 |
已知向量
=(3,5,-1),
=(2,2,3),
=(1,-1,2),则向量
-
+4
的坐标为( )
| a |
| b |
| c |
| a |
| b |
| c |
| A、(5,-1,4) |
| B、(5,1,-4) |
| C、(-5,1,4) |
| D、(-5,-1,4) |
若a=1.70.3,b=0.93.1,c=log30.7,则a,b,c的大小关系是( )
| A、a>b>c |
| B、a>c>b |
| C、b>c>a |
| D、c>b>a |