题目内容
11.设P为双曲线$\frac{x^2}{a^2}$-y2=1(a>0)的上一点,∠F1PF2=$\frac{2π}{3}$,(F1、F2为左、右焦点),则△F1PF2的面积等于( )| A. | $\sqrt{3}{a^2}$ | B. | $\frac{{\sqrt{3}}}{3}{a^2}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\frac{{2\sqrt{3}}}{3}$ |
分析 先利用双曲线的定义,得|PF1|-|PF2|=2a,利用余弦定理求出|PF1|•|PF2|的值,结合三角形的面积公式即可求出△F1PF2的面积.
解答 解:∵双曲线方程$\frac{x^2}{a^2}$-y2=1(a>0),
∴b=1,不妨设P是双曲线的右支上的一个点,
则由双曲线的定义,得|PF1|-|PF2|=2a,
∵,∠F1PF2=$\frac{2π}{3}$,
∴4c2=|PF1|2+|PF2|2-2|PF1|•|PF2|cos$\frac{2π}{3}$=|PF1|2+|PF2|2+|PF1|•|PF2|
=(|PF1|-|PF2|)2+3|PF1|•|PF2|,
即4c2=4a2+3|PF1|•|PF2|,
即3|PF1|•|PF2|=4c2-4a2=4b2=4,
则|PF1|•|PF2|=$\frac{4}{3}$,
∴${S}_{△{F}_{1}P{F}_{2}}$=$\frac{1}{2}$|PF1|•|PF2|sin$\frac{2π}{3}$=$\frac{1}{2}$×$\frac{4}{3}$×$\frac{\sqrt{3}}{2}$=$\frac{{\sqrt{3}}}{3}$,
故选:C.
点评 本题考查三角形面积的求法,根据双曲线的定义结合余弦定理将条件进行转化是解决本题的关键.,解题时要认真审题,注意双曲线定义、余弦定理的灵活运用,是中档题.
练习册系列答案
相关题目
19.各项均不为零的等差数列{an}中,若an+1=an2-an-1(n∈N*,n≥2),则S2016=( )
| A. | 0 | B. | 2 | C. | 2015 | D. | 4032 |
3.点F为双曲线C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a,b>0)的焦点,过点F的直线与双曲线的一条渐近线垂直且交于点A,与另一条渐近线交于点B.若3$\overrightarrow{AF}$+$\overrightarrow{BF}$=0,则双曲线C的离心率是( )
| A. | $\frac{\sqrt{5}}{2}$ | B. | $\frac{\sqrt{6}}{2}$ | C. | $\sqrt{3}$ | D. | $\sqrt{6}$ |
1.下列函数中,既是偶函数又在(0,+∞)上单调递增的是( )
| A. | y=ex | B. | y=lnx2 | C. | y=$\sqrt{x}$ | D. | y=sinx |