ÌâÄ¿ÄÚÈÝ
15£®ÇëÔÚ¡°³ä·Ö²»±ØÒª¡±¡°±ØÒª²»³ä·Ö¡±¡°³äÒª¡±¡°¼È²»³ä·ÖÒ²²»±ØÒª¡±ÖÐÑ¡ÔñÒ»¸öʹÃüÌâÕýÈ·µÄÌîдµ½ÏÂÃæ¸÷ÌâµÄºáÏßÉÏ£®£¨1£©ÈôA⊆B£¬Ôò¡°x¡ÊA¡±ÊÇ¡°x¡ÊB¡±µÄ³ä·Ö²»±ØÒªÌõ¼þ£»
£¨2£©¡°x=$\frac{¦Ð}{6}$¡±ÊÇ¡°sinx=$\frac{1}{2}$¡±µÄ³ä·Ö²»±ØÒªÌõ¼þ£»
£¨3£©¡°¦Á£¾¦Â¡±ÊÇ¡°sin¦Á£¾sin¦Â¡±µÄ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ£»
£¨4£©ÔÚ¡÷ABCÖУ¬¡°A£¾B¡±ÊÇ¡°sinA£¾sinB¡±µÄ³äÒªÌõ¼þ£»
£¨5£©ÒÑÖªÖ±Ïßl1£ºy=k1x+b1£¬l2£ºy=k2x+b2£¬Ôò¡°k1=k2¡±ÊÇ¡°l1¡Îl2¡±µÄ±ØÒª²»³ä·ÖÌõ¼þ£»
£¨6£©¡°ab£¾0¡±ÊÇ¡°·½³Ì$\frac{{x}^{2}}{a}$+$\frac{{y}^{2}}{b}$=1±íʾÍÖÔ²¡±µÄ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ£»
£¨7£©¡°aÊǵڶþÏóÏ޽ǡ±ÊÇ¡°sin¦Á•tan¦Á£¼0¡±µÄ³ä·Ö²»±ØÒªÌõ¼þ£»
£¨8£©¡°|a|=|b|¡±ÊÇ¡°a=b¡±µÄ±ØÒª²»³ä·ÖÌõ¼þ£»
£¨9£©¡°ÊµÊý¦Ë=0¡±ÊÇ¡°ÏòÁ¿¦Ë$\overrightarrow{a}$=0¡±µÄ³ä·Ö²»±ØÒªÌõ¼þ£»
£¨10£©¡°ËıßÐεÄÁ½Ìõ¶Ô½ÇÏßÏàµÈ¡±ÊÇ¡°ËıßÐÎÊǵÈÑüÌÝÐΡ±µÄ±ØÒª²»³ä·ÖÌõ¼þ£®
·ÖÎö £¨1£©ÓÉÓÚA⊆B£¬Ôò¡°x¡ÊA¡±⇒¡°x¡ÊB¡±£¬·´Ö®²»³ÉÁ¢£¬¼´¿ÉÅжϳö¹ØÏµ£»
£¨2£©¡°x=$\frac{¦Ð}{6}$¡±⇒¡°sinx=$\frac{1}{2}$¡±£¬·´Ö®²»³ÉÁ¢£¬¼´¿ÉÅжϳö¹ØÏµ£»
£¨3£©¡°¦Á£¾¦Â¡±Óë¡°sin¦Á£¾sin¦Â¡±Ïà»¥ÍÆ²»³ö£¬¼´¿ÉÅжϳö¹ØÏµ£»
£¨4£©ÔÚ¡÷ABCÖУ¬¡°A£¾B¡±?a£¾b?¡°sinA£¾sinB¡±£¨ÀûÓÃÕýÏÒ¶¨Àí£©£¬¼´¿ÉÅжϳö¹ØÏµ£»
£¨5£©l1¡Îl2⇒k1=k2£¬·´Ö®²»³ÉÁ¢£¬¼´¿ÉÅжϳö¹ØÏµ£»
£¨6£©¡°ab£¾0¡±Óë¡°·½³Ì$\frac{{x}^{2}}{a}$+$\frac{{y}^{2}}{b}$=1±íʾÍÖÔ²¡±Ïà»¥ÍÆ²»³ö£¬¼´¿ÉÅжϳö¹ØÏµ£»
£¨7£©¡°aÊǵڶþÏóÏ޽ǡ±⇒¡°sin¦Á•tan¦Á£¼0¡±£¬·´Ö®²»³ÉÁ¢£¬aÊǵÚÈýÏóÏÞ½ÇÒ²¿ÉÒÔÍÆ³ö£¬¼´¿ÉÅжϳö¹ØÏµ£»
£¨8£©a=b⇒¡°|a|=|b|¡±£¬·´Ö®²»³ÉÁ¢£¬¼´¿ÉÅжϳö¹ØÏµ£»
£¨9£©¡°ÊµÊý¦Ë=0¡±⇒¡°ÏòÁ¿¦Ë$\overrightarrow{a}$=0¡±£¬·´Ö®²»³ÉÁ¢£¬¼´¿ÉÅжϳö¹ØÏµ£»
£¨10£©ËıßÐÎÊǵÈÑüÌÝÐÎ⇒¡°ËıßÐεÄÁ½Ìõ¶Ô½ÇÏßÏàµÈ¡±£¬·´Ö®²»³ÉÁ¢£¬¼´¿ÉÅжϳö¹ØÏµ£®
½â´ð ½â£º£¨1£©ÈôA⊆B£¬Ôò¡°x¡ÊA¡±ÊÇ¡°x¡ÊB¡±µÄ³ä·Ö²»±ØÒªÌõ¼þ£»
£¨2£©¡°x=$\frac{¦Ð}{6}$¡±ÊÇ¡°sinx=$\frac{1}{2}$¡±µÄ³ä·Ö²»±ØÒªÌõ¼þ£»
£¨3£©¡°¦Á£¾¦Â¡±ÊÇ¡°sin¦Á£¾sin¦Â¡±µÄ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ£»
£¨4£©ÔÚ¡÷ABCÖУ¬¡°A£¾B¡±ÊÇ¡°sinA£¾sinB¡±µÄ³äÒªÌõ¼þ£»
£¨5£©ÒÑÖªÖ±Ïßl1£ºy=k1x+b1£¬l2£ºy=k2x+b2£¬Ôò¡°k1=k2¡±ÊÇ¡°l1¡Îl2¡±µÄ±ØÒª²»³ä·ÖÌõ¼þ£»
£¨6£©¡°ab£¾0¡±ÊÇ¡°·½³Ì$\frac{{x}^{2}}{a}$+$\frac{{y}^{2}}{b}$=1±íʾÍÖÔ²¡±µÄ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ£»
£¨7£©¡°aÊǵڶþÏóÏ޽ǡ±ÊÇ¡°sin¦Á•tan¦Á£¼0¡±µÄ³ä·Ö²»±ØÒªÌõ¼þ£»
£¨8£©¡°|a|=|b|¡±ÊÇ¡°a=b¡±µÄ±ØÒª²»³ä·ÖÌõ¼þ£»
£¨9£©¡°ÊµÊý¦Ë=0¡±ÊÇ¡°ÏòÁ¿¦Ë$\overrightarrow{a}$=0¡±µÄ³ä·Ö²»±ØÒªÌõ¼þ£»
£¨10£©¡°ËıßÐεÄÁ½Ìõ¶Ô½ÇÏßÏàµÈ¡±ÊÇ¡°ËıßÐÎÊǵÈÑüÌÝÐΡ±µÄ±ØÒª²»³ä·ÖÌõ¼þ£®
¹Ê´ð°¸·Ö±ðΪ£º£¨1£©³ä·Ö²»±ØÒª£»£¨2£©³ä·Ö²»±ØÒª£»£¨3£©¼È²»³ä·ÖÒ²²»±ØÒª£»£¨4£©³äÒª£»£¨5£©±ØÒª²»³ä·Ö£»
£¨6£©¼È²»³ä·ÖÒ²²»±ØÒª£»£¨7£©³ä·Ö²»±ØÒª£»£¨8£©±ØÒª²»³ä·Ö£»£¨9£©³ä·Ö²»±ØÒª£»£¨10£©±ØÒª²»³ä·Ö£®
µãÆÀ ±¾Ì⿼²éÁ˳äÒªÌõ¼þµÄÅж¨·½·¨£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| ¼¶Êý | È«ÔÂÓ¦ÄÉ˰ËùµÃ¶î | ˰ÂÊ |
| 1 | ²»³¬¹ý500ÔªµÄ²¿·Ö | 5% |
| 2 | ³¬¹ý500ÔªÖÁ2000ÔªµÄ²¿·Ö | 10% |
| 3 | ³¬¹ý2000ÔªÖÁ5000ÔªµÄ²¿·Ö | 15% |
£¨2£©Ä³ÈËÒ»Ô·ÝÓ¦½»ÄÉ˰´ËÏî˰¿îΪ26.78Ôª£¬ÄÇôËûµ±ÔµĹ¤×Ê£¬Ð½½ðËùµÃÊǶàÉÙ£¿
| A£® | Ææº¯Êý | B£® | żº¯Êý | ||
| C£® | ¼ÈÊÇÆæº¯ÊýÓÖÊÇżº¯Êý | D£® | ·ÇÆæ·Çżº¯Êý |
| A£® | $[0£¬\sqrt{2}]$ | B£® | [0£¬2] | C£® | [1£¬2] | D£® | $[\sqrt{2}£¬2]$ |