题目内容
对于任意的n∈N*(n不超过数列的项数),若数列{an}满足:a1+a2+…+an=a1•a2•…•an,则称该数列为K数列.
(Ⅰ)若数列{an}是首项a1=2的K数列,求a3的值;
(Ⅱ)若数列{
}是K数列.
(1)试求an+1与an的递推关系;
(2)当n≥3且0<a1<1时,试比较
+
+…+
与
的大小.
(Ⅰ)若数列{an}是首项a1=2的K数列,求a3的值;
(Ⅱ)若数列{
| 1 |
| an |
(1)试求an+1与an的递推关系;
(2)当n≥3且0<a1<1时,试比较
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 16 |
| 3 |
考点:数列递推式,数列与不等式的综合
专题:点列、递归数列与数学归纳法
分析:(Ⅰ)根据递推数列分别令n=2,3,即可求a3的值;
(Ⅱ)根据数列{
}是K数列.建立条件故选即可得到结论.
(Ⅱ)根据数列{
| 1 |
| an |
解答:
解:(Ⅰ)当n=2时,a1+a2=a1•a2,即2+a2=2a2,
解得a2=2,
当n=3时,a1+a2+a3=a1•a2•a3,即2+2+a3=4a3,
解得a3=
;
(Ⅱ)∵数列{
}是K数列,
∴
+
+…+
=
•
•…
,①
+
+…+
+
=
•
•…
,②
两式相减得
=(
-1)
•
•…
,③
则
=(
-1)
•
•…
,(n≥2),④
两式相除得
=
,
整理得an+1=an2-an+1=0,(n≥2).
又
+
=
•
,
∴a2=1-a1,
综上an+1与an的递推关系为an+1=
.
(2)∵0<a1<1,∴0<1-a1<1,
从而
≤a3=(a2-
)2+
<1,
a4≥(
)2-
+1=
,
又an+1>an≥
,(n≥4),
当n≥2时,
=
-
∴n≥3时,
+
+…+
=
+(
-
)+…+(
-
)
=
+
-
=-
=
≥
.
解得a2=2,
当n=3时,a1+a2+a3=a1•a2•a3,即2+2+a3=4a3,
解得a3=
| 4 |
| 3 |
(Ⅱ)∵数列{
| 1 |
| an |
∴
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 1 |
| an+1 |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
两式相减得
| 1 |
| an+1 |
| 1 |
| an+1 |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
则
| 1 |
| an |
| 1 |
| an |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an-1 |
两式相除得
| ||
|
(
| ||||
|
整理得an+1=an2-an+1=0,(n≥2).
又
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a1 |
| 1 |
| a2 |
∴a2=1-a1,
综上an+1与an的递推关系为an+1=
|
(2)∵0<a1<1,∴0<1-a1<1,
从而
| 3 |
| 4 |
| 1 |
| 2 |
| 3 |
| 4 |
a4≥(
| 3 |
| 4 |
| 3 |
| 4 |
| 13 |
| 16 |
又an+1>an≥
| 13 |
| 16 |
当n≥2时,
| 1 |
| an |
| 1 |
| an-1 |
| 1 |
| an+1-1 |
∴n≥3时,
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 1 |
| a1 |
| 1 |
| a2-1 |
| 1 |
| a3-1 |
| 1 |
| an-1 |
| 1 |
| an+1-1 |
=
| 1 |
| a1 |
| 1 |
| a2-1 |
| 1 |
| an+1-1 |
| 1 |
| an+1-1 |
| 1 |
| 1-an+1 |
| 13 |
| 16 |
点评:本题主要考查递推数列的应用,以及数列与不等式的综合,考查学生的运算能力,综合性较强,难度较大.
练习册系列答案
相关题目