题目内容
以直角坐标系的原点为极点O,
轴正半轴为极轴,已知点P的直角坐标为(1,-5),点C的极坐标为
,若直线l经过点P,且倾斜角为
,圆C的半径为4.
(1).求直线l的参数方程及圆C的极坐标方程;
(2).试判断直线l与圆C有位置关系.
(1).求直线l的参数方程及圆C的极坐标方程;
(2).试判断直线l与圆C有位置关系.
(1)
,
;(2)直线
与圆
相离.
试题分析:本题主要考查直线的参数方程、极坐标方程、点到直线的距离公式、直线与圆的位置关系等基础知识,意在考查考生的运算求解能力、推理论证能力以及转化思想的应用.第一问,利用已知条件列出直线的参数方程,利用极坐标与直角坐标的转化公式,得到点C的直角坐标,从而得到圆C的标准方程,再利用极坐标与直角坐标的转化公式得到圆C的极坐标方程;第二问,将直线
试题解析:(1)直线
由题知
∴圆
得圆
(2)由题意得,直线
圆心
∴直线
练习册系列答案
相关题目