题目内容

已知f(x)=(1+mx)(1-x)n=a0+a1x+a2x2+…+an+1xn+1(m∈R,n∈N+),其中a1=a2=-3.
(Ⅰ)求m,n的值;
(Ⅱ)求f(x)展开式中所有含x的奇次幂的项的系数和.
考点:二项式系数的性质
专题:二项式定理
分析:(Ⅰ)由题意根据二项式定理可得,a1=-
C
1
n
+m=-3,a2=
C
2
n
-m
C
1
n
=-3,由此求得m、n的值.
(Ⅱ)求出 f(1)=a0+a1+a2+…+a7=0,f(-1)=a0-a1+a2-a3+…-a7=-128,即可求得a1+a3+a5+a7的值.
解答: 解:(Ⅰ)由题意根据二项式定理可得,a1=-
C
1
n
+m=m-n  a2=
C
2
n
-m
C
1
n
-
n(n-1)
2
-mn,

依题设,有
m-n=-3
n(n-1)
2
-mn=-3
,解得
m=3
n=6

(Ⅱ)由(Ⅰ)可知 f(x)=(1+3x)(1-x)6=a0+a1x+a2x2+…+a7x7
∴f(1)=a0+a1+a2+…+a7=0,f(-1)=a0-a1+a2-a3+…-a7=-128.
∴展开式中所有含x的奇次幂的项的系数和 a1+a3+a5+a7=64.
点评:本题主要考查二项式定理、赋值法等基础知识,考查观察能力、运算求解能力、推理能力和函数与方程思想,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网