题目内容
13.分析 该几何体是有一个侧面PAC垂直于底面,高为 $\sqrt{3}$,底面是一个等腰直角三角形的三棱锥,这个几何体的外接球的球心O在高线PD上,且是等边三角形PAC的中心,由此能求出这个几何体的外接球的半径R,从而能求出这个几何体的外接球的表面积.
解答
解:由已知中正视图是一个正三角形,侧视图和俯视图均为三角形
可得该几何体是有一个侧面PAC垂直于底面,高为 $\sqrt{3}$,底面是一个等腰直角三角形的三棱锥,如图.
则这个几何体的外接球的球心O在高线PD上,且是等边三角形PAC的中心,
这个几何体的外接球的半径R=$\frac{2}{3}$PD=$\frac{2\sqrt{3}}{3}$.
则这个几何体的外接球的表面积为S=4πR2=4π×($\frac{2\sqrt{3}}{3}$)2=$\frac{16π}{3}$.
故答案为:$\frac{16π}{3}$.
点评 本题考查几何体的外接球的表面积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关题目
4.已知F为双曲线$C:\frac{x^2}{9}-\frac{y^2}{16}=1$的左焦点,P,Q为C右支上的点,若PQ的长等于虚轴长的2倍,点A(5,0)在线段PQ上,则△PFQ的周长为( )
| A. | 28 | B. | 36 | C. | 44 | D. | 48 |
2.某公司对新研发的一种产品进行合理定价,且销量与单价具有相关关系,将该产品按事先拟定的价格进行试销,得到如下数据:
(1)现有三条y对x的回归直线方程:$\stackrel{∧}{y}$=-10x+170; $\stackrel{∧}{y}$=-20x+250; $\stackrel{∧}{y}$=-15x+210;根据所学的统计学知识,选择一条合理的回归直线,并说明理由.
(2)预计在今后的销售中,销量与单价服从(1)中选出的回归直线方程,且该产品的成本是每件5元,为使公司获得最大利润,该产品的单价应定多少元?(利润=销售收入-成本)
| 单价x(单位:元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
| 销量y(单位:万件) | 90 | 84 | 83 | 80 | 75 | 68 |
(2)预计在今后的销售中,销量与单价服从(1)中选出的回归直线方程,且该产品的成本是每件5元,为使公司获得最大利润,该产品的单价应定多少元?(利润=销售收入-成本)
3.
已知函数f(x)=Acos(ωx+φ)的图象如图所示,则f($\frac{5π}{6}$)=( )
| A. | -$\frac{2}{3}$ | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |