ÌâÄ¿ÄÚÈÝ
9£®ÒÑ֪ijÖÐѧ¸ßÈýÎĿưàѧÉú¹²ÓÐ800È˲μÓÁËÊýѧÓëµØÀíµÄˮƽ²âÊÔ£¬Ñ§Ð£¾ö¶¨ÀûÓÃËæ»úÊý±í·¨´ÓÖгéÈ¡100È˽øÐгɼ¨³éÑùµ÷²é£¬ÏȽ«800È˰´001£¬002£¬¡£¬800½øÐбàºÅ£®£¨1£©Èç¹û´ÓµÚ8ÐеÚ7ÁеÄÊý¿ªÊ¼ÏòÓÒ¶Á£¬ÇëÄãÒÀ´Îд³ö×îÏȼì²éµÄ3¸öÈ˵ıàºÅ£»
£¨ÏÂÃæÕªÈ¡Á˵Ú7Ðе½µÚ9ÐУ©
£¨2£©³éÈ¡µÄ100È˵ÄÊýѧÓëµØÀíµÄˮƽ²âÊԳɼ¨ÈçÏÂ±í£º
³É¼¨·ÖΪÓÅÐã¡¢Á¼ºÃ¡¢¼°¸ñÈý¸öµÈ¼¶£»ºáÏò£¬×ÝÏò·Ö±ð±íʾµØÀí³É¼¨ÓëÊýѧ³É¼¨£¬ÀýÈ磺±íÖÐÊýѧ³É¼¨ÎªÁ¼ºÃµÄ¹²ÓÐ20+18+4=42£®
¢ÙÈôÔÚ¸ÃÑù±¾ÖУ¬Êýѧ³É¼¨ÓÅÐãÂÊÊÇ30%£¬Çóa£¬bµÄÖµ£º
| ÈËÊý | Êýѧ | |||
| ÓÅÐã | Á¼ºÃ | ¼°¸ñ | ||
| µØÀí | ÓÅÐã | 7 | 20 | 5 |
| Á¼ºÃ | 9 | 18 | 6 | |
| ¼°¸ñ | a | 4 | b | |
·ÖÎö £¨1£©ÀûÓÃËæ»úÊý±í·¨ÄÜÒÀ´Îд³ö×îÏȼì²éµÄ3¸öÈ˵ıàºÅ£®
£¨2£©¢ÙÔÚ¸ÃÑù±¾ÖУ¬ÓÉÊýѧ³É¼¨ÓÅÐãÂÊÊÇ30%£¬ÄÜÇó³öa£¬bµÄÖµ£»
¢Úa+b=31£¬a¡Ý11£¬b¡Ý7£¬ÀûÓÃÁоٷ¨ÄÜÇó³öÊýѧ³É¼¨ÓÅÐãµÄÈËÊý±È¼°¸ñµÄÈËÊýÉٵĸÅÂÊ£®
½â´ð ½â£º£¨1£©ÀûÓÃËæ»úÊý±í·¨´ÓÖгéÈ¡100È˽øÐгɼ¨³éÑùµ÷²é£¬
ÏȽ«800È˰´001£¬002£¬¡£¬800½øÐбàºÅ£¬
´ÓµÚ8ÐеÚ7ÁеÄÊý¿ªÊ¼ÏòÓÒ¶Á£¬ÒÀ´Îд³ö×îÏȼì²éµÄ3¸öÈ˵ıàºÅΪ£º
785£¬667£¬199
£¨2£©¢Ù¡ßÔÚ¸ÃÑù±¾ÖУ¬Êýѧ³É¼¨ÓÅÐãÂÊÊÇ30%£¬
¡à$\frac{7+9+a}{100}$=30%£¬¡àa=14£¬
b=100-30-£¨20+18+4£©-£¨5+6£©=17£®
¢Úa+b=100-£¨7+20+5£©-£¨9+18+6£©-4=31£¬
¡ßa¡Ý11£¬b¡Ý7£¬¡àa£¬bµÄ´îÅ䣬
£¨11£¬20£©£¬£¨12£¬19£©£¬£¨13£¬18£©£¬£¨14£¬17£©£¬£¨15£¬16£©£¬£¨16£¬15£©£¬£¨17£¬14£©£¬£¨18£¬13£©£¬£¨19£¬12£©£¬
£¨20£¬11£©£¬£¨21£¬10£©£¬£¨22£¬9£©£¬£¨23£¬8£©£¬£¨24£¬7£©£¬¹²ÓÐ14ÖÖ£®
Éèa¡Ý11£¬b¡Ý7£¬Êýѧ³É¼¨ÓÅÐãµÄÈËÊý±È¼°¸ñµÄÈËÊýÉÙΪʼþA£¬a+5£¼b£®
ʼþA°üÀ¨£º£¨11£¬20£©£¬£¨12£¬19£©£¬¹²2¸ö»ù±¾Ê¼þ£»
P£¨A£©=$\frac{2}{14}=\frac{1}{7}$£¬Êýѧ³É¼¨ÓÅÐãµÄÈËÊý±È¼°¸ñµÄÈËÊýÉٵĸÅÂÊΪ$\frac{2}{14}=\frac{1}{7}$£®
µãÆÀ ±¾Ì⿼²éËæ»úÊý·¨µÄÓ¦Ó㬿¼²é¸ÅÂʵÄÇ󷨣¬ÊÇ»ù´¡Ì⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÁоٷ¨µÄºÏÀíÔËÓã®
| A£® | 15¡ã¡Ü¦È¡Ü90¡ã | B£® | 60¡ã¡Ü¦È¡Ü90¡ã | C£® | 15¡ã¡Ü¦È¡Ü105¡ã | D£® | 30¡ã¡Ü¦È¡Ü105¡ã |
| A£® | £¨2£¬+¡Þ£© | B£® | £¨2£¬6£© | C£® | £¨0£¬6£© | D£® | £¨0£¬2£© |
| A£® | 9 | B£® | 3 | C£® | $\frac{{3\sqrt{2}}}{2}$ | D£® | 9$\sqrt{2}$ |
| A£® | {x|x£¾1} | B£® | {x|1£¼x£¼2} | C£® | {x|x£¾2} | D£® | {x|x¡Ý2} |