题目内容
在数列{an}中,a1=
,an+1=
an+(
)n+1,
(1)设bn=2nan,证明:数列{bn}是等差数列;
(2)求{an}的前n项和Sn.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
(1)设bn=2nan,证明:数列{bn}是等差数列;
(2)求{an}的前n项和Sn.
考点:数列的求和,等差关系的确定
专题:等差数列与等比数列
分析:(1)由已知得
=
+1,从而an=n(
)n,bn=2nan=n,由此能证明数列{bn}是首项为1,公差为1的等差数列.
(2)由an=n(
)n,利用错位相减法能求出{an}的前n项和Sn.
| an+1 | ||
(
|
| an | ||
(
|
| 1 |
| 2 |
(2)由an=n(
| 1 |
| 2 |
解答:
解:(1)∵在数列{an}中,a1=
,an+1=
an+(
)n+1,
∴
=
+1,
又
=
=1,
∴{
}是首项为1,公差为1的等差数列,
∴
=n,∴an=n(
)n,
∴bn=2nan=n,
∴数列{bn}是首项为1,公差为1的等差数列.
(2)∵an=n(
)n,
∴Sn=
+2×(
)2+3×(
)3+…+n×(
)n,①
Sn=(
)2+2×(
)3+3×(
)4+…+n×(
)n+1,②
①-②,得:
Sn=
+(
)2+(
)3+…+(
)n-n×(
)n+1
=
-n×(
)n+1
=1-
-n×(
)n+1,
∴Sn=2-(n+2)×(
)n.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴
| an+1 | ||
(
|
| an | ||
(
|
又
| a1 | ||
|
| ||
|
∴{
| an | ||
(
|
∴
| an | ||
(
|
| 1 |
| 2 |
∴bn=2nan=n,
∴数列{bn}是首项为1,公差为1的等差数列.
(2)∵an=n(
| 1 |
| 2 |
∴Sn=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
①-②,得:
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=
| ||||
1-
|
| 1 |
| 2 |
=1-
| 1 |
| 2n |
| 1 |
| 2 |
∴Sn=2-(n+2)×(
| 1 |
| 2 |
点评:本题考查等差数列的证明,考查数列的前n项和的求法,是中档题,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目
十个人站成一排,其中甲、乙、丙三人恰巧站在一起的概率为( )
A、
| ||
B、
| ||
C、
| ||
D、
|