题目内容
设x,y满足约束条件
,则目标函数z=4x+y的最小值为 .
|
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用z的几何意义,利用数形结合即可得到结论.
解答:
解:作出不等式组对应的平面区域如图:
由z=4x+y得y=-4x+z,
平移直线y=-4x+z,由图象可知当直线y=-4x+z经过点A时,
直线y=-4x+z的截距最小,此时z最小,
由
,解得
,
即A(0,1),
此时z=0+1=1,
故答案为:1
由z=4x+y得y=-4x+z,
平移直线y=-4x+z,由图象可知当直线y=-4x+z经过点A时,
直线y=-4x+z的截距最小,此时z最小,
由
|
|
即A(0,1),
此时z=0+1=1,
故答案为:1
点评:本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键.
练习册系列答案
相关题目
台风中心从A地以20km/h的速度向东偏北45°方向移动,离台风中心30km内的地区为危险区,城市B在A的正东40km处,B城市处于危险区内的时间为( )
| A、0.5h | B、1h |
| C、1.5h | D、2h |
已知f(x)=
-
-m有两个不同的零点,则m的取值范围是( )
| 4-x+3x |
| 2 |
| |4-x-3x| |
| 2 |
| A、(-∞,3) |
| B、[3,+∞) |
| C、(0,3) |
| D、(3,+∞) |