题目内容

如图锐角三角形ABC的角平分线AD的延长线交它的外接圆于点E,若△ABC面积S=
3
4
AD•AE
,求∠BAC的大小.
考点:与圆有关的比例线段
专题:选作题,立体几何
分析:由题设条件推导出△ABE∽△ADC,从而得到AB•AC=AD•AE,再由S=
1
2
AB•ACsin∠BAC,且S=
3
4
AD•AE
,能求出sin∠BAC=
3
2
,由此能求出∠BAC.
解答: 解:∵△ABC的角平分线AD的延长线交它的外接圆于E,
∴∠BAE=∠CAD,
∵∠AEB与∠ACB是同弧上的圆周角,
∴∠AEB=∠ACD,
∴△ABE∽△ADC,∴
AB
AE
=
AD
AC
,即AB•AC=AD•AE,
∵S=
1
2
AB•ACsin∠BAC,且S=
3
4
AD•AE

∴sin∠BAC=
3
2

又∵∠BAC是三角形内角,
∴∠BAC=60°.
点评:本题考查角的大小的求法,是中档题,解题时要注意圆的性质和三角形面积公式的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网