题目内容
设数列{an}的各项都是正数,且对任意n∈N*都有a13+a23+a33+…+an3=Sn2+2Sn,其中Sn为数{an}的前n项和,则an= .
考点:数列的求和
专题:综合题,等差数列与等比数列
分析:利用n=1求出a1,利用a13+a23+a33+…+an3=Sn2+2Sn,a13+a23+a33+…+an-13=Sn-12+2Sn-1,做差推出an-an-1=1证明是等差数列.
解答:
解:在已知式中,当n=1时,a13=S12+2S1,
∵a1>0,∴a1=2.
当n≥2时,a13+a23+a33+…+an3=Sn2+2Sn①a13+a23+a33+…+an-13=Sn-12+2Sn-1②
①-②得,an3=Sn2-Sn-12+2(Sn-Sn-1)=(Sn-Sn-1)(Sn+Sn-1+2)
∵an>0,∴an2=Sn+Sn-1+2=2Sn-an+2③
∵a1=2适合上式,
当n≥2时,an-12=2Sn-1-an-1+2④
③-④得:an2-an-12=2(Sn-Sn-1)-an+an-1=2an-an+an-1=an+an-1
∵an+an-1>0,∴an-an-1=1
∴数列{an}是等差数列,首项为1,公差为1,可得an=n+1.
故答案为:n+1.
∵a1>0,∴a1=2.
当n≥2时,a13+a23+a33+…+an3=Sn2+2Sn①a13+a23+a33+…+an-13=Sn-12+2Sn-1②
①-②得,an3=Sn2-Sn-12+2(Sn-Sn-1)=(Sn-Sn-1)(Sn+Sn-1+2)
∵an>0,∴an2=Sn+Sn-1+2=2Sn-an+2③
∵a1=2适合上式,
当n≥2时,an-12=2Sn-1-an-1+2④
③-④得:an2-an-12=2(Sn-Sn-1)-an+an-1=2an-an+an-1=an+an-1
∵an+an-1>0,∴an-an-1=1
∴数列{an}是等差数列,首项为1,公差为1,可得an=n+1.
故答案为:n+1.
点评:在解答的过程当中充分体现了数列通项与前n项和的知识,难度中等.
练习册系列答案
相关题目
点P是椭圆
+
=1上一点,F1,F2为椭圆两焦点,若∠F1PF2=90°,则△PF1F2面积为( )
| x2 |
| 100 |
| y2 |
| 64 |
| A、64 | ||||
| B、36 | ||||
C、36(2-
| ||||
D、
|