题目内容

8.函数f(x)=log2(x2-mx+3m)满足:对任意的实数x1,x2,当2≤x1<x2时,都有f(x1)-f(x2)<0,则m的取值范围是(-4,4].

分析 根据题意利用复合函数的单调性,二次函数、对数函数的性质,可得$\left\{\begin{array}{l}{{2}^{2}-2m+3m>0}\\{\frac{m}{2}≤2}\end{array}\right.$,由此求得m的范围.

解答 解:∵当2≤x1<x2时,都有f(x1)-f(x2)<0,
故函数f(x)在[2,+∞)上单调递减,
故由函数f(x)=log2(x2-mx+3m),
可得$\left\{\begin{array}{l}{{2}^{2}-2m+3m>0}\\{\frac{m}{2}≤2}\end{array}\right.$,求得-4<m≤4,
故答案为:(-4,4].

点评 本题主要考查复合函数的单调性,二次函数、对数函数的性质,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网