题目内容

已知函数f(α)=
cos(
π
2
+α)cos(2π+α)sin(-α+
3
2
π)
sin(α+
7
2
π)sin(-3π-α)

(1)化简f(α);
(2)若α是第三象限角,且cos(α-
3
2
π)=
1
5
,求f(α).
考点:运用诱导公式化简求值
专题:计算题,三角函数的求值
分析:(1)运用诱导公式化简即可.
(2)由已知可先解得sinα,cosα的值,从而可求f(α)的值.
解答: 解:(1)f(α)=
cos(
π
2
+α)cos(2π+α)sin(-α+
3
2
π)
sin(α+
7
2
π)sin(-3π-α)
=
sinαcosαcosα
-cosαsinα
=-cosα
(2)∵α是第三象限角,且cos(α-
3
2
π)=
1
5

∴可解得:sinα=-
1
5
,cosα=-
1-sin2α
=-
2
6
5

∴f(α)=-cosα=
2
6
5
点评:本题主要考察了运用诱导公式化简求值,属于基本知识的考查.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网