ÌâÄ¿ÄÚÈÝ
10£®| A£® | $\frac{¦Ð}{12}$»ò$\frac{5¦Ð}{12}$ | B£® | $\frac{¦Ð}{12}$»ò$\frac{¦Ð}{3}$ | C£® | $\frac{¦Ð}{6}$»ò$\frac{5¦Ð}{12}$ | D£® | $\frac{¦Ð}{6}$»ò$\frac{¦Ð}{3}$ |
·ÖÎö ÓÉÌâÒâ¿ÉµÃÐýתºóµÄËÄÌõÏß¶ÎËùΧ³ÉµÄ·â±ÕͼÐÎΪÕý·½ÐΣ¬±ß³¤Îªcos¦Á-sin¦Á£¬µÃ£º£¨cos¦Á-sin¦Á£©2=$\frac{1}{2}$£¬½ø¶ø½âµÃcos¦Á-sin¦Á=¡À$\frac{\sqrt{2}}{2}$£¬cos¦Á+sin¦Á=$\frac{\sqrt{6}}{2}$£¬ÁªÁ¢½âµÃcos¦Á=$\frac{\sqrt{6}¡À\sqrt{2}}{4}$£¬ÀûÓÃÌØÊâ½ÇµÄÈý½Çº¯ÊýÖµ¼´¿ÉµÃ½â£®
½â´ð
½â£ºÈçͼËùʾ£¬ÐýתºóµÄËÄÌõÏß¶ÎËùΧ³ÉµÄ·â±ÕͼÐÎΪÕý·½ÐΣ¬
±ß³¤Îªcos¦Á-sin¦Á£¬
ÓÉÌâÒâ¿ÉµÃ£º£¨cos¦Á-sin¦Á£©2=$\frac{1}{2}$£¬
¿ÉµÃ£ºcos¦Á-sin¦Á=¡À$\frac{\sqrt{2}}{2}$¢Ù£¬2sin¦Ácos¦Á=$\frac{1}{2}$
ÓÖ0£¼¦Á£¼$\frac{¦Ð}{2}$£¬¿ÉµÃ£ºcos¦Á+sin¦Á=$\sqrt{1+2sin¦Ácos¦Á}$=$\frac{\sqrt{6}}{2}$£¬¢Ú
ËùÒÔ£ºÓɢ٢ڿɵãºcos¦Á=$\frac{\sqrt{6}¡À\sqrt{2}}{4}$£®
¹Ê¦Á=$\frac{¦Ð}{12}$»ò$\frac{5¦Ð}{12}$£®
¹ÊÑ¡£ºA£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËͬ½ÇÈý½Çº¯Êý»ù±¾¹ØÏµÊ½£¬Èý½Çº¯ÊýµÄ¶¨ÒåÔÚÈý½Çº¯ÊýÇóÖµÖеÄÓ¦Ó㬿¼²éÁËÊýÐνáºÏ˼Ï룬ÓÉÒÑÖªµÃµ½ÐýתºóµÄËÄÌõÏß¶ÎËùΧ³ÉµÄ·â±ÕͼÐÎÊDZ߳¤Îªcos¦Á-sin¦ÁµÄÕý·½ÐÎÊǽâÌâµÄ¹Ø¼ü£¬ÊôÓÚÖеµÌ⣮
| A£® | $\frac{16}{3}$ | B£® | 4 | C£® | $\frac{8}{3}$ | D£® | $\frac{4}{3}$ |
| A£® | 2$\sqrt{2}$ | B£® | 2$\sqrt{5}$ | C£® | 4 | D£® | 6 |