题目内容

2.△ABC的内角A,B,C的对边分别为a,b,c,已知a=2$\sqrt{5}$,c=4,cosA=$\frac{2}{3}$,则b=(  )
A.2$\sqrt{2}$B.2$\sqrt{5}$C.4D.6

分析 由已知利用余弦定理即可计算得解.

解答 解:∵a=2$\sqrt{5}$,c=4,cosA=$\frac{2}{3}$,
∴由余弦定理a2=b2+c2-2bccosA,可得:20=b2+16-2×$b×4×\frac{2}{3}$,
∴整理可得:3b2-16b-12=0,解得:b=6或-$\frac{2}{3}$(舍去).
故选:D.

点评 本题主要考查了余弦定理在解三角形中的应用,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网