题目内容
若f(x)=x3+3x2+a在(-∞,0]上有两个零点,则实数a的取值范围是( )
| A、(-4,0] |
| B、[-4,0] |
| C、[0,4) |
| D、(0,4] |
考点:函数零点的判定定理
专题:函数的性质及应用
分析:先求出函数的导数,求出函数的极值,由题意解不等式求出即可.
解答:
解:∵f′(x)=3x(x+2),
令f′(x)>0,解得:x>0,x<-2,
令f′(x)<0,解得:-2<x<0,
∴在(-∞,-2),(0,+∞)上f(x)递增,
在(-2,0)上f(x)递减,
若f(x)=x3+3x2+a在(-∞,0]上有两个零点,
则f(x)max=f(-2)=4+a>0⇒a>-4,
f(x)min=f(0)=a≤0,
∴-4<a≤0,
故选:A.
令f′(x)>0,解得:x>0,x<-2,
令f′(x)<0,解得:-2<x<0,
∴在(-∞,-2),(0,+∞)上f(x)递增,
在(-2,0)上f(x)递减,
若f(x)=x3+3x2+a在(-∞,0]上有两个零点,
则f(x)max=f(-2)=4+a>0⇒a>-4,
f(x)min=f(0)=a≤0,
∴-4<a≤0,
故选:A.
点评:本题考察了函数的单调性,函数的极值问题,导数的应用,是一道基础题.
练习册系列答案
相关题目
设F1,F2分别是双曲线
-
=1(a>0,b>0)的左、右焦点,若双曲线左支上存在一点M使
•(
+
)=0,O坐标原点,且|
|=
|
|,则该双曲线的离心率为( )
| x2 |
| a2 |
| y2 |
| b2 |
| F1M |
| OM |
| OF1 |
| MF1 |
| ||
| 3 |
| MF2 |
A、
| ||||||
B、
| ||||||
C、
| ||||||
D、
|
已知F1(-3,0),F2(3,0),是椭圆
+
=1(a>b>0)两个焦点,P在椭圆上,∠F1PF2=α,且当α=
时,△F1PF2的面积最大,则椭圆的标准方程为( )
| x2 |
| a2 |
| y2 |
| b2 |
| 2π |
| 3 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
直线
(t为参数)的倾斜角为( )
|
| A、30° | B、60° |
| C、90° | D、135° |
若原点到直线ax+by+1=0的距离为
,则两圆(x-a)2+y2=1,x2+(y-b)2=1的位置关系是( )
| 1 |
| 2 |
| A、内切 | B、外切 | C、内含 | D、外离 |
已知i是虚数单位,则
=( )
| 2+i |
| 1+i |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
A、
| ||||
B、
| ||||
C、
| ||||
D、
|