题目内容
10.有3台设备,每台正常工作的概率均为0.9,则至少有2台能正常工作的概率为0.972.(用小数作答)分析 利用n次独立重复试验中事件A恰好发生k次的概率计算公式能求出至少有2台能正常工作的概率.
解答 解:∵有3台设备,每台正常工作的概率均为0.9,
∴至少有2台能正常工作的概率为:
p=${C}_{3}^{2}0.{9}^{2}×0.1+{C}_{3}^{3}0.{9}^{3}$=0.972.
故答案为:0.972.
点评 本题考查概率的求法,是基础题,解题时要认真审题,注意n次独立重复试验中事件A恰好发生k次的概率计算公式的合理运用.
练习册系列答案
相关题目
18.在某次试验中,有两个试验数据x,y统计的结果如下面的表格
(1)求出y对x的回归直线方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$中回归系数$\stackrel{∧}{a}$,$\stackrel{∧}{b}$;
(2)估计当x为10时$\stackrel{∧}{y}$的值是多少?
(附:在线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$中,$\stackrel{∧}{b}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{{{\sum_{i=1}^n{x_i^2-n\overline x}}^2}}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$,其中$\overline{x}$,$\overline{y}$为样本平均值.
| 序号 | x | y | x2 | xy |
| 1 | 1 | 2 | 1 | 2 |
| 2 | 2 | 3 | 4 | 6 |
| 3 | 3 | 4 | 9 | 12 |
| 4 | 4 | 4 | 16 | 16 |
| 5 | 5 | 5 | 25 | 25 |
| ∑ | 15 | 18 | 55 | 61 |
(2)估计当x为10时$\stackrel{∧}{y}$的值是多少?
(附:在线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$中,$\stackrel{∧}{b}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{{{\sum_{i=1}^n{x_i^2-n\overline x}}^2}}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$,其中$\overline{x}$,$\overline{y}$为样本平均值.
15.已知二次函数f(x)=x2+bx+c的两个零点分别在区间(-2,-1)和(-1,0)内,则f(3)的取值范围是( )
| A. | (12,20) | B. | (12,18) | C. | (18,20) | D. | (8,18) |
20.设复数$z=\frac{2i}{cos120°+isin120°}$,则|z|=( )
| A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | 1 | D. | 2 |