题目内容

如果(
3
+2x)11=a0+a1x+a2x2+…+a11x11,那么(a1+a3+a5+…+a112-(a0+a2+a4+…+a102的值是(  )
A、-1B、0C、3D、1
考点:二项式系数的性质
专题:二项式定理
分析:在所给的等式中,分别令x=1、x=-1,共得到2个等式,再把这两个等式相乘,即得所求.
解答: 解:在(
3
+2x)11=a0+a1x+a2x2+…+a11x11中,
令x=1可得 (
3
+2)11=a0+a1+a2+…+a11 ①,
令x=-1可得(
3
-2)11=a0-a1+a2+…-a11 ②,
①×②可得(a0+a2+a4+…+a102-(a1+a3+a5+…+a112 =(
3
+2)11 •(
3
-2)11 =-1,
∴(a1+a3+a5+…+a112-(a0+a2+a4+…+a102=1,
故选:D.
点评:本题主要考查二项式定理的应用,在二项展开式中,通过给变量赋值,求得某些项的系数和,是一种简单有效的方法,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网