题目内容

ABCD-A1B1C1D1是正方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论中错误的是


  1. A.
    A、M、O三点共线    
  2. B.
    M、O、A1、A四点共面
  3. C.
    A、O、C、M四点共面  
  4. D.
    B、B1、O、M四点共面
D
试题分析:平面A1C∩平面AB1D1=AO,∵直线A1C交平面AB1D1于点M,
∴M∈AO,即A,O,M三点共线;
根据A,O,M三点共线,知A1A∩AO=A,∴M,O,A1,A四点共面;
同理M,O,C1,C四点共面;OM,B1D是异面直线,故O,M,B1,D四点共面是错误的,
故选D.
考点:本题主要考查正方体几何特征及点线面关系。
点评:空间点、线、面的位置关系以及平面相交和平面的确定公理的应用。
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网