题目内容
16.甲、乙两人玩数字游戏,先由甲心中任想一个数字记为a,再由乙猜想甲刚才的数字,把乙想的数字记为b,且a、b∈{1、2、3、4、5},若a-b=0.则称“甲、乙志同道合“,现任意找两个人玩这个游戏,得出他们“志同道合”的概率为多少?分析 本题是一个古典概型,试验包含的所有事件是任意找两人玩这个游戏,其中满足条件的满足a-b=0的情形包括5种,列举出所有结果,根据古典概型概率公式得到结果.
解答 解:由题意知本题是一个古典概型,
∵试验包含的所有事件是任意找两人玩这个游戏,共有5×5=25种猜字结果,
其中满足a-b=0的有如下情形:(1,1),(2,2),(3,3),(4,4),(5,5),共5种,
故得出他们“志同道合”的概率$\frac{5}{25}$=$\frac{1}{5}$
点评 本题是古典概型问题,属于高考新增内容,正确列举满足条件的基本事件,得到他们“心有灵犀”的各种情形.
练习册系列答案
相关题目
11.($\sqrt{x}$+$\frac{1}{x}$)10的展开式含x的整数幂的项数为( )
| A. | 0 | B. | 2 | C. | 4 | D. | 6 |
1.设函数f(x)定义在实数集上,f(1+x)=f(1-x),且当x≥1时,$f(x)={({\frac{1}{2}})^x}$,则有( )
| A. | $f({\frac{1}{3}})<f(2)<f({\frac{1}{2}})$ | B. | $f({\frac{1}{2}})<f(2)<f({\frac{1}{3}})$ | C. | $f({\frac{1}{2}})<f({\frac{1}{3}})<f(2)$ | D. | $f(2)<f({\frac{1}{3}})<f({\frac{1}{2}})$ |
2.若平面α外的直线l的方向向量为$\overrightarrow{a}$,平面α的法向量为$\overrightarrow{u}$,则能使l∥α的是( )
| A. | $\overrightarrow{a}$=(1,-3,5),$\overrightarrow{u}$=(1,0,1) | B. | $\overrightarrow{a}$=(1,0,0),$\overrightarrow{u}$=(-2,0,0) | ||
| C. | $\overrightarrow{a}$=(0,2,1),$\overrightarrow{u}$=(-1,0,1) | D. | $\overrightarrow{a}$=(1,-1,3),$\overrightarrow{u}$=(0,3,1) |