题目内容
6.已知圆C:(x-2)2+(y-3)2=1,(0,3)且斜率为k的直线l与圆C有两个不同的交点M,N,且$\overrightarrow{OM}$•$\overrightarrow{ON}$=$\frac{84}{5}$,则实数k的值为$\frac{1}{2}$.分析 联立方程组消元,设M(x1,y1),N(x2,y2),根据根与系数的关系得出x1x2,y1y2,代入数量积公式列方程解出k.
解答 解:直线l的方程为y=kx+3,
联立方程组$\left\{\begin{array}{l}{(x-2)^{2}+(y-3)^{2}=1}\\{y=kx+3}\end{array}\right.$,消元得:(k2+1)x2-4x+3=0,
设M(x1,y1),N(x2,y2),则x1x2=$\frac{3}{{k}^{2}+1}$,x1+x2=$\frac{4}{{k}^{2}+1}$.
∴y1y2=(kx1+3)(kx2+3)=k2x1x2+3k(x1+x2)+9=$\frac{3{k}^{2}}{{k}^{2}+1}$+$\frac{12k}{{k}^{2}+1}$+9.
∴$\overrightarrow{OM}$•$\overrightarrow{ON}$=x1x2+y1y2=$\frac{3}{{k}^{2}+1}$+$\frac{3{k}^{2}}{{k}^{2}+1}$+$\frac{12k}{{k}^{2}+1}$+9=$\frac{84}{5}$,
解得,k=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.
点评 本题考查了平面向量的数量积运算,根与系数的关系,属于中档题.
练习册系列答案
相关题目
16.已知函数f(x)=log2(ax+4)在(1,2]上单调递减,则实数a的值可以是( )
| A. | 1 | B. | -1 | C. | -2 | D. | -3 |
17.
如图,A1,A2为椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1的长轴的左、右端点,O为坐标原点,S,Q,T为椭圆上不同于A1,A2的三点,直线QA1,QA2,OS围成一个平行四边形OPQR,则|OS|2+|OT|2=( )
| A. | 5 | B. | 3+$\sqrt{5}$ | C. | 9 | D. | 14 |
11.已知函数f(x)=2cos(ωx+θ)(0<θ<π,ω>0)为奇函数,其图象与直线y=2相邻两交点的距离为π,则函数f(x)( )
| A. | 在[${\frac{π}{6}$,$\frac{π}{3}}$]上单调递减 | B. | 在[${\frac{π}{6}$,$\frac{π}{3}}$]上单调递增 | ||
| C. | 在[-$\frac{π}{6}$,$\frac{π}{4}}$]上单调递减 | D. | 在[-$\frac{π}{6}$,$\frac{π}{4}}$]上单调递增 |