ÌâÄ¿ÄÚÈÝ
4£®| Éí¸ß£¨cm£© | 168 | 174 | 175 | 176 | 178 | 182 | 185 | 188 |
| ÈËÊý | 1 | 2 | 4 | 3 | 5 | 1 | 3 | 1 |
£¨2£©Éí¸ßΪ185cmºÍ188cmµÄËÄÃûѧÉú·Ö±ð¼ÇΪA£¬B£¬C£¬D£¬ÏÖ´ÓÕâËÄÃûѧÉúÑ¡2Ãûµ£ÈÎÕý¸±ÃŽ«£¬ÇëÀûÓÃÁоٷ¨ÁгöËùÓпÉÄÜÇé¿ö£¬²¢ÇóѧÉúAÈëѡΫµÄ¸ÅÂÊ£®
·ÖÎö £¨1£©ÓÉ20ÃûѧÉúµÄÉí¸ßͳ¼Æ±í£¬ÄÜÇó³öÕâ20ÃûѧÉúµÄÉí¸ßµÄÖÐλÊýΪ¡¢ÖÚÊý²¢ÄÜ×÷³ö¾¥Ò¶Í¼£®
£¨2£©ÀûÓÃÁоٷ¨Çó³öÕý¸±ÃŽ«µÄËùÓпÉÄÜÇé¿öºÍѧÉúAÈëÑ¡ÕýÃŽ±µÄÓжàÉÙÖÖ¿ÉÄÜ£¬ÓÉ´ËÄÜÇó³öѧÉúAÈëÑ¡ÕýÃŽ«µÄ¸ÅÂÊ£®
½â´ð ½â£º£¨1£©ÓÉ20ÃûѧÉúµÄÉí¸ßͳ¼Æ±í£¬µÃµ½Õâ20ÃûѧÉúµÄÉí¸ßµÄÖÐλÊýΪ177cm£¬ÖÚÊýΪ178cm£¬
¾¥Ò¶Í¼Îª£º![]()
£¨2£©Õý¸±ÃŽ«µÄËùÓпÉÄÜÇé¿öΪ£º
£¨A£¬B£©£¬£¨B£¬A£©£¬£¨A£¬C£©£¬£¨C£¬A£©£¬£¨A£¬D£©£¬£¨D£¬A£©£¬£¨B£¬C£©£¬£¨C£¬B£©£¬£¨B£¬D£©£¬£¨D£¬B£©£¬£¨C£¬D£©£¬£¨D£¬C£©£¬
¹²12ÖÖ£¬
ÆäÖУ¬Ñ§ÉúAÈëÑ¡ÕýÃŽ±µÄ£¨A£¬B£©£¬£¨A£¬C£©£¬£¨A£¬D£©3ÖÖ¿ÉÄÜ£¬
¡àѧÉúAÈëÑ¡ÕýÃŽ«µÄ¸ÅÂÊΪ$\frac{3}{12}=\frac{1}{4}$£®
µãÆÀ ±¾Ì⿼²é¸ÅÂʵÄÇ󷨣¬ÊÇ»ù´¡Ì⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâ¸æÊ¾»úÄÜʼþ¸ÅÂʼÆË㹫ʽµÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
14£®ÉèA1£¬A2·Ö±ðΪ˫ÇúÏß$C£º\frac{x^2}{a^2}-\frac{y^2}{b^2}=1£¨a£¾0£¬b£¾0£©$µÄ×óÓÒ¶¥µã£¬ÈôË«ÇúÏßÉÏ´æÔÚµãMʹµÃÁ½Ö±ÏßбÂÊ${k_{M{A_1}}}{k_{M{A_2}}}£¼2$£¬ÔòË«ÇúÏßCµÄÀëÐÄÂʵÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
| A£® | $£¨0£¬\sqrt{3}£©$ | B£® | $£¨1£¬\sqrt{3}£©$ | C£® | $£¨\sqrt{3}£¬+¡Þ£©$ | D£® | £¨0£¬3£© |
19£®ÔڵȱÈÊýÁÐ{an}ÖУ¬a1=16£¬a6=2a5•a7£¬Ôòa4=£¨¡¡¡¡£©
| A£® | 4 | B£® | 2 | C£® | 1 | D£® | $\frac{1}{2}$ |