题目内容

10.已知函数f(x)=2x2+mx+4,它在(-∞,-2]上单调递减,则f(1)的取值范围是(  )
A.f(1)=14B.f(1)>14C.f(1)≤14D.f(1)≥14

分析 由已知得到对称轴x=-$\frac{m}{4}$≥-2,解出m范围,得到f(1)的范围.

解答 解:由已知函数f(x)=2x2+mx+4,m∈R,它在(-∞,-2]上单调递减,
则对称轴x=-$\frac{m}{4}$≥-2,所以m≤8,
又f(1)=6+m,
所以f(1)-6≤8,
所以f(1)≤14,
故选C.

点评 本题考查的知识点是二次函数的性质,其中根据二次函数的图象和性质,构造一个关于m的不等式,是解答本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网