题目内容

20.已知△ABC中,a,b,c分别为内角A,B,C所对的边长,且a=1,b=$\sqrt{2}$,tanC=1,则△ABC外接圆面积为(  )
A.$\frac{1}{2}$πB.$\frac{1}{3}$πC.πD.$\sqrt{3}$π

分析 由 tanC=1,根据同角三角函数的基本关系可得cosC和sinC的值,由余弦定理可求c,由正弦定理可得外接圆的半径,利用圆的面积公式即可计算得解.

解答 解:∵tanC=1,a=1,b=$\sqrt{2}$,
∴cosC=$\sqrt{\frac{1}{1+ta{n}^{2}C}}$=$\frac{\sqrt{2}}{2}$,sinC=$\sqrt{1-co{s}^{2}C}$=$\frac{\sqrt{2}}{2}$,
∴由余弦定理可得:c=$\sqrt{{a}^{2}+{b}^{2}-2abcosC}$=1,
∴由正弦定理可得2R=$\frac{c}{sinC}$=$\frac{1}{\frac{\sqrt{2}}{2}}$=$\sqrt{2}$,
∴△ABC外接圆面积S=πR2=π×($\frac{\sqrt{2}}{2}$)2=$\frac{π}{2}$.
故选:A.

点评 本题考查正弦定理,余弦定理,同角三角函数基本关系式在解三角形中的应用,求出sinC是解题的关键,考查了转化思想,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网