题目内容

已知数列{an}的通项公式an=2n+1,求{
1
anan+1
}前n项的和.
考点:数列的求和
专题:等差数列与等比数列
分析:an=2n+1,可得
1
anan+1
=
1
2
(
1
2n+1
-
1
2n+3
)
.利用“裂项求和”即可得出.
解答: 解:∵an=2n+1,
1
anan+1
=
1
(2n+1)(2n+3)
=
1
2
(
1
2n+1
-
1
2n+3
)

∴{
1
anan+1
}前n项的和=
1
2
[(
1
3
-
1
5
)+(
1
5
-
1
7
)
+…+(
1
2n+1
-
1
2n+3
)]
=
1
2
(
1
3
-
1
2n+3
)
=
n
6n+9
点评:本题考查了“裂项求和”方法,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网