题目内容

如图所示,为测一建筑物的高度,在地面上选取A,B两点,从A,B两点分别测得建筑物顶端的仰角为30°,45°,且A,B两点间的距离为60m,则该建筑物的高度为(  )
A、(30+30
3
)m
B、(30+15
3
)m
C、(15+30
3
)m
D、(15+15
3
)m
考点:解三角形的实际应用
专题:应用题,解三角形
分析:要求建筑物的高度,需求PB长度,要求PB的长度,在△PAB由正弦定理可得.
解答: 解:在△PAB,∠PAB=30°,∠APB=15°,AB=60,
sin15°=sin(45°-30°)=sin45°cos30°-cos45°sin30°=
6
-
2
4

由正弦定理得:
ABsin30°
sin15°
=30(
6
+
2
),
∴建筑物的高度为PBsin45°=30(
6
+
2
)×
2
2
=(30+30
3
)m,
故选A.
点评:此题是实际应用题用到正弦定理和特殊角的三角函数值,正弦定理在解三角形时,用于下面两种情况:一是知两边一对角,二是知两角和一边.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网