题目内容
18.已知抛物线y2=2px(p>0)上一点M到焦点F的距离等于2p,则直线MF的斜率为±$\frac{2\sqrt{3}}{3}$.分析 设P(x0,y0)根据定义点M与焦点F的距离等于P到准线的距离,求出x0,然后代入抛物线方程求出y0即可求出坐标.然后求解直线的斜率.
解答 解:根据定义,点P与准线的距离也是2P,
设M(x0,y0),则P与准线的距离为:x0+$\frac{p}{2}$,
∴x0+$\frac{p}{2}$=2p,x0=$\frac{3}{2}$p,
∴y0=±$\sqrt{3}$p,
∴点M的坐标($\frac{3}{2}$p,±$\sqrt{3}$p).
直线MF的斜率为:$\frac{±\sqrt{3}p}{\frac{3}{2}p}$=±$\frac{2\sqrt{3}}{3}$.
故答案为:±$\frac{2\sqrt{3}}{3}$.
点评 本题考查了抛物线的定义和性质,解题的关键是根据定义得出点M与焦点F的距离等于M到准线的距离,属于中档题.
练习册系列答案
相关题目
9.
三棱锥P-ABC中,D、E分别是三角形PAC和三角形ABC的外心,则下列判断一定正确的是( )
| A. | DE∥PB | B. | 当AB=BC且PA=AC时DE∥PB | ||
| C. | 当且仅当AB=BC且PA=AC时,DE⊥AC | D. | DE⊥AC |
3.
某几何体的三视图如图所示,其中正视图和侧视图是全等的等腰三角形,现从该几何体的实心外接球中挖去该几何体,则剩余几何体的体积是( )
| A. | $\frac{9π}{4}$-$\frac{1}{6}$ | B. | $\frac{9π}{16}$-$\frac{1}{2}$ | C. | $\frac{9π}{16}$-$\frac{1}{6}$ | D. | $\frac{9π}{8}$-$\frac{1}{6}$ |