题目内容
4.已知三条直线l1:x+3y-3=0,l2:x-y+1=0,l3:2x+y+m=0交于同一点,求m的值.分析 联立$\left\{\begin{array}{l}{x+3y-3=0}\\{x-y+1=0}\end{array}\right.$,解得交点P,把交点代入l3:2x+y+m=0,解出m即可得出.
解答 解:联立$\left\{\begin{array}{l}{x+3y-3=0}\\{x-y+1=0}\end{array}\right.$,解得交点P(0,1),
把交点代入l3:2x+y+m=0,可得0+1+m=0,解得m=-1.
∴m=-1.
点评 本题考查了直线的交点,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
12.函数y=ln(ax2+x-1)的值域为R,当且仅当( )
| A. | a≥0 | B. | a>0 | C. | a$≥-\frac{1}{4}$ | D. | a$<-\frac{1}{4}$ |