题目内容

已知函数f(x)=lnx-kx+1(k∈R)
(Ⅰ)当k=1时,求函数f(x)的单调区间;
(Ⅱ)若f(x)≤0恒成立,试确定实数k的取值范围;
(Ⅲ)证明:
ln2
3
+
ln3
4
+
ln4
5
+…+
lnn
n+1
n(n-1)
4
(n∈N*且n>1)
考点:利用导数求闭区间上函数的最值,利用导数研究函数的单调性
专题:导数的综合应用
分析:(Ⅰ)由函数f(x)的定义域为(0,+∞),f′(x)=
1
x
-1
.能求出函数f(x)的单调区间.
(Ⅱ)由(1)知k≤0时,f(x)在(0,+∞)上是增函数,而f(1)=1-k>0,f(x)≤0不成立,故k>0,又由(1)知f(x)的最大值为f(
1
k
),由此能确定实数k的取值范围.
(Ⅲ)由(2)知,当k=1时,有f(x)≤0在(0,+∞)恒成立,且f(x)在(1,+∞)上是减函数,f(1)=0,即lnx<x-1在x∈[2,+∞)上恒成立,由此能够证明
ln2
3
+
ln3
4
+
ln4
5
+…+
lnn
n+1
n(n-1)
4
(n∈N*且n>1)
解答: 解:(Ⅰ)易知f(x)的定义域为(0,+∞),
又f′(x)=
1
x
-1

当0<x<1时,f′(x)>0;
当x>1时,f′(x)<0
∴f(x)在(0,1)上是增函数,在(1,+∞)上是减函数.

(Ⅱ)当k≤0时,f(1)=1-k>0,不成立,
故只考虑k>0的情况
又f′(x)=
1
x
-k

当k>0时,当0<x<
1
k
时,f′(x)>0;
x>
1
k
时,f′(x)<0
(0,
1
k
)
上是增函数,在(
1
k
,+∞)
时减函数,
此时f(x)max=f(
1
k
)=-lnk

要使f(x)≤0恒成立,只要-lnk≤0 即可
解得:k≥1.

(Ⅲ)当k=1时,
有f(x)≤0在(0,+∞)恒成立,
且f(x)在(1,+∞)上是减函数,f(1)=0,
即lnx<x-1在x∈(1,+∞)上恒成立,
令x=n2,则lnn2<n2-1,
即2lnn<(n-1)(n+1),
lnn
n+1
n-1
2
(n∈N*且n>1)
ln2
3
+
ln3
4
+
ln4
5
+…+
lnn
n+1
1
2
+
2
2
+
3
2
+…+
n-1
2
=
n(n-1)
4

即:
ln2
3
+
ln3
4
+
ln4
5
+…+
lnn
n+1
n(n-1)
4
(n∈N*且n>1)成立.
点评:本题考查函数单调区间的求法,确定实数的取值范围,不等式的证明.考查化归与转化、分类与整合的数学思想,培养学生的抽象概括能力、推理论证能力、运算求解能力和创新意识.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网