题目内容
已知数列{an}的通项an=
,若数列{an}的最大项为aM则M= .
| n-5.8 |
| n-6.1 |
考点:数列的函数特性
专题:等差数列与等比数列
分析:an=1+
,当n≤6时,an<1;当n≥7时,a7>1,再利用单调性即可得出.
| 0.3 |
| n-6.1 |
解答:
解:an=1+
,当n≤6时,∵
<0,∴an<1;
当n≥7时,数列{an}单调递减,且a7>1.
综上可得:当n=7时,a7最大.
故答案为:7.
| 0.3 |
| n-6.1 |
| 0.3 |
| n-6.1 |
当n≥7时,数列{an}单调递减,且a7>1.
综上可得:当n=7时,a7最大.
故答案为:7.
点评:本题考查了数列的单调性,属于基础题.
练习册系列答案
相关题目
圆心在C(-3,4),且半径为
的圆的方程为( )
| 5 |
| A、(x-3)2+(y+4)2=5 | ||
B、(x+3)2+(y-4)2=
| ||
| C、(x+3)2+(y-4)2=5 | ||
D、(x-3)2+(y+4)2=
|
已知-
<α<β<
,则α-β的范围是( )
| π |
| 6 |
| 2π |
| 3 |
A、(-
| ||||
B、(-
| ||||
C、(-
| ||||
D、(-
|