题目内容

12.已知$\overrightarrow{a}$=t$\overrightarrow{{e}_{1}}$+(k2-1)$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=(2t+1)$\overrightarrow{{e}_{1}}$-3$\overrightarrow{{e}_{2}}$,且$\overrightarrow{a}$∥$\overrightarrow{b}$,试求t关于k的函数.

分析 由$\overrightarrow{a}$∥$\overrightarrow{b}$知3t+(k2-1)(2t+1)=0,从而解得.

解答 解:∵$\overrightarrow{a}$=t$\overrightarrow{{e}_{1}}$+(k2-1)$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=(2t+1)$\overrightarrow{{e}_{1}}$-3$\overrightarrow{{e}_{2}}$,且$\overrightarrow{a}$∥$\overrightarrow{b}$,
∴3t+(k2-1)(2t+1)=0,
∴t=$\frac{1-{k}^{2}}{2{k}^{2}+1}$.

点评 本题考查了平行向量的应用及转化思想的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网