题目内容
12.已知$\overrightarrow{a}$=t$\overrightarrow{{e}_{1}}$+(k2-1)$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=(2t+1)$\overrightarrow{{e}_{1}}$-3$\overrightarrow{{e}_{2}}$,且$\overrightarrow{a}$∥$\overrightarrow{b}$,试求t关于k的函数.分析 由$\overrightarrow{a}$∥$\overrightarrow{b}$知3t+(k2-1)(2t+1)=0,从而解得.
解答 解:∵$\overrightarrow{a}$=t$\overrightarrow{{e}_{1}}$+(k2-1)$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=(2t+1)$\overrightarrow{{e}_{1}}$-3$\overrightarrow{{e}_{2}}$,且$\overrightarrow{a}$∥$\overrightarrow{b}$,
∴3t+(k2-1)(2t+1)=0,
∴t=$\frac{1-{k}^{2}}{2{k}^{2}+1}$.
点评 本题考查了平行向量的应用及转化思想的应用.
练习册系列答案
相关题目
2.已知a,b,c分别是△ABC中角A,B,C的对边长,b和c是关于x的方程x2-9x+25cosA=0的两个根(b>c),且$({sinB+sinC+sinA})({sinB+sinC-sinA})=\frac{18}{5}sinBsinC$,则△ABC的形状为( )
| A. | 等腰三角形 | B. | 锐角三角形 | C. | 直角三角形 | D. | 钝角三角形 |
7.已知向量法$\overrightarrow{{l}_{1}}$≠$\overrightarrow{0}$,λ∈R,$\overrightarrow{a}$=$\overrightarrow{{l}_{1}}$+λ$\overrightarrow{{l}_{2}}$,$\overrightarrow{b}$=2$\overrightarrow{{l}_{2}}$,若向量$\overrightarrow{a}$和$\overrightarrow{b}$共线,则下列关系一定成立的是( )
| A. | λ=0 | B. | $\overrightarrow{{l}_{2}}$=$\overrightarrow{0}$ | C. | $\overrightarrow{{l}_{1}}$∥$\overrightarrow{{l}_{2}}$ | D. | $\overrightarrow{{l}_{2}}$=$\overrightarrow{0}$或λ=0 |