题目内容
13.在棱长为2的正方体中随机取一点,该点落在这个正方体的内切球内的概率是$\frac{π}{6}$.分析 根据题意,求出正方体的体积,进而可得其内切球的直径,可得其内切球的体积,由几何概型的公式,计算可得答案
解答 解:根据题意,棱长为2的正方体,其体积为8,
而其内切球的直径就是正方体的棱长,所以球的半径为1,体积为$\frac{4}{3}π$,
由几何概型的概率公式得到这一点在球内的概率为$\frac{\frac{4π}{3}}{8}=\frac{π}{6}$;
故答案为:$\frac{π}{6}$.
点评 本题考查几何概型的应用,解题的关键在于根据正方体及其内切球的位置关系,找到其内切球的直径半径,进而得到体积,然后利用几何概型的公式解答.
练习册系列答案
相关题目
1.P:四边形的对角互补,q:四边形内接于圆.那么( )
| A. | P是q的充分条件,但不是q的必要条件 | |
| B. | q是P的充分条件,但不是P的必要条件 | |
| C. | P既不是q的充分条件.也不是q的必要条件 | |
| D. | P是q的充分条件,q也是P的充分条件 |
8.两个向量$\overrightarrow{a}$=(cosα,4-cos2α),α∈R,$\overrightarrow{b}$=(cosβ,λ+sinβ),β∈R,若$\overrightarrow{a}$=$\overrightarrow{b}$,则实数λ的取值范围为B( )
| A. | [2,5] | B. | [$\frac{11}{4}$,5] | C. | [$\frac{11}{4}$,+∞] | D. | (-∞,5] |
18.已知等差数列{an}中,a1+a2+a3+…a100=0,则( )
| A. | a1+a101>0 | B. | a2+a100<0 | C. | a3+a98=0 | D. | a5=51 |
2.在△ABC中,已知D为AB上一点,若$\overrightarrow{AD}=2\overrightarrow{DB}$,则$\overrightarrow{CD}$=( )
| A. | $\frac{2}{3}\overrightarrow{CA}+\frac{1}{3}\overrightarrow{CB}$ | B. | $\frac{1}{3}\overrightarrow{CA}+\frac{2}{3}\overrightarrow{CB}$ | C. | $2\overrightarrow{CA}-\overrightarrow{CB}$ | D. | $\overrightarrow{CA}-2\overrightarrow{CB}$ |