题目内容
某种灯泡使用寿命在1000小时以上的概率为0.2,则三个这样的灯泡使用1000小时后,至多只坏一个的概率是 .
考点:互斥事件的概率加法公式,相互独立事件的概率乘法公式
专题:概率与统计
分析:题意知3个相互独立的灯泡使用的时间能否超过1000小时,可以看做一个做了3次独立重复试验的概率,根据独立重复试验的公式得到结果.
解答:
解:∵灯泡的耐用时间超过1000小时的概率为0.2,
3个相互独立的灯泡使用的时间能否超过1000小时,
可以看做一个做了3次独立重复试验的概率,
∴最多只有1个损坏的概率是0.23+C31×0.8×0.22=0.096+0.008=0.104
故答案为:0.104
3个相互独立的灯泡使用的时间能否超过1000小时,
可以看做一个做了3次独立重复试验的概率,
∴最多只有1个损坏的概率是0.23+C31×0.8×0.22=0.096+0.008=0.104
故答案为:0.104
点评:本题考查n次独立重复试验中恰好发生k次的概率,本题解题的关键是看出本试验符合独立重复试验,本题是一个基础题.
练习册系列答案
相关题目
将函数y=cos(2x-
)的图象向左平移
个单位,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的一条对称轴是( )
| π |
| 3 |
| π |
| 6 |
A、x=
| ||
B、x=
| ||
| C、x=π | ||
D、x=
|
| A、y=0.85x |
| B、y=0.53x |
| C、y=50×0.53+(x-50)×0.85 |
| D、y=50×0.53+0.85x |