题目内容
2.函数$f(x)={log_2}\frac{1}{2-3x}$的定义域为$(-∞,\frac{2}{3})$.分析 根据函数成立的条件即可求函数的定义域.
解答 解:要使函数有意义,则$\frac{1}{2-3x}$>0,
得2-3x>0,得x<$\frac{2}{3}$,
即函数的定义域为$(-∞,\frac{2}{3})$,
故答案为:$(-∞,\frac{2}{3})$
点评 本题主要考查函数的定义域的求解,要求熟练掌握常见函数成立的条件.
练习册系列答案
相关题目
13.已知随机变量X服从正态分布N(2,σ2)(σ>0),且P(X>0)=0.8,则P(2<X<4)=( )
| A. | 0.2 | B. | 0.3 | C. | 0.4 | D. | 0.6 |
17.对两个变量x和y进行回归分析,得到一组样本数据:(x1,y1),(x2,y2),…(xn,yn),则下列说法中不正确的是( )
| A. | 由样本数据得到的回归方程$\frac{∧}{y}$=${\;}_{b}^{∧}$x+${\;}_{a}^{∧}$必过样本中心(${\;}_{x}^{-}$,${\;}_{y}^{-}$) | |
| B. | 残差平方和越小的模型,拟合的效果越好 | |
| C. | 若变量y和x之间的相关系数为r=-0.9362,则变量和之间具有线性相关关系 | |
| D. | 用相关指数R2来刻画回归效果,R2越小,说明模型的拟合效果越好 |
7.在某校举行的航天知识竞赛中,参与竞赛的文科生与理科生人数之比为1:3,分数在80以上(含80)的同学获奖,按文理科用分层抽样的方法共抽取200人的成绩作为样本,得到成绩的2×2列联表.
(1)填写下面的2×2列联表,问能否有超过95%的把握认为“获奖与学生的文理科有关”?
(2)将上述调查所得的频率视为概率,现从参赛学生中,任意抽取3名学生,记“获奖”学生人数为X,求X的分布列及数学期望.
附表及公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
(1)填写下面的2×2列联表,问能否有超过95%的把握认为“获奖与学生的文理科有关”?
(2)将上述调查所得的频率视为概率,现从参赛学生中,任意抽取3名学生,记“获奖”学生人数为X,求X的分布列及数学期望.
| 文科生 | 理科生 | 合计 | |
| 获奖 | 5 | ||
| 不获奖 | 115 | ||
| 合计 | 200 |
| P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| K0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
14.
执行如图所示的程序框图,若输入x=20,则输出x的值为( )
| A. | $\frac{1}{2}$ | B. | $\frac{3}{8}$ | C. | $\frac{3}{4}$ | D. | 0 |
11.已知ω>0,函数f(x)=sin(ωx+$\frac{π}{3}$)在($\frac{π}{2}$,π)上单调递减,则ω的取值范围是 )
| A. | [$\frac{1}{3}$,$\frac{7}{6}$] | B. | [$\frac{1}{3}$,$\frac{5}{6}$] | C. | [0,$\frac{1}{3}$] | D. | [0,3] |
12.为了得到函数y=$\sqrt{3}$sin3x+cos3x的图象,可以将函数y=2sin3x的图象( )
| A. | 向右平移$\frac{π}{6}$个单位 | B. | 向左平移$\frac{π}{6}$个单位 | ||
| C. | 向右平移$\frac{π}{18}$个单位 | D. | 向左平移$\frac{π}{18}$个单位 |