题目内容

9.已知函数f(x)=2cos2$\frac{x}{2}$-$\sqrt{3}$sinx.
(1)求函数f(x)的最小正周期和值域;
(2)设α∈(-π,0),且f(α-$\frac{π}{6}$)=$\frac{13}{5}$,求sin(2α+$\frac{π}{12}$)值.

分析 (1)利用三角函数恒等变换的应用化简函数解析式可得f(x)=2cos(x+$\frac{π}{3}$)+1,利用周期公式可求函数f(x)的最小正周期,利用余弦函数的图象和性质可求f(x)的值域.
(2)由α∈(-π,0),且f(α-$\frac{π}{6}$)=$\frac{13}{5}$,可求cos(α+$\frac{π}{6}$)=$\frac{4}{5}$,解得sin(α+$\frac{π}{6}$)=±$\frac{3}{5}$,讨论可求sin2(α+$\frac{π}{6}$),cos2(α+$\frac{π}{6}$)的值,由sin(2α+$\frac{π}{12}$)=sin[2(α+$\frac{π}{6}$)-$\frac{π}{4}$]即可计算求值.

解答 解:(1)∵f(x)=2cos2$\frac{x}{2}$-$\sqrt{3}$sinx=1+cosx-$\sqrt{3}$sinx=2cos(x+$\frac{π}{3}$)+1,
∴函数f(x)的最小正周期为2π.
∵cos(x+$\frac{π}{3}$)∈[-1,1],
∴f(x)=2cos(x+$\frac{π}{3}$)+1∈[-1,3].
(2)∵α∈(-π,0),且f(α-$\frac{π}{6}$)=2cos(α-$\frac{π}{6}$+$\frac{π}{3}$)+1=$\frac{13}{5}$,
∴解得:α+$\frac{π}{6}$∈(-$\frac{5π}{6}$,$\frac{π}{6}$),cos(α+$\frac{π}{6}$)=$\frac{4}{5}$,
∴sin(α+$\frac{π}{6}$)=±$\frac{3}{5}$,
①当sin(α+$\frac{π}{6}$)=$\frac{3}{5}$时,
∴sin2(α+$\frac{π}{6}$)=2sin(α+$\frac{π}{6}$)cos(α+$\frac{π}{6}$)=$\frac{24}{25}$,
cos2(α+$\frac{π}{6}$)=cos2(α+$\frac{π}{6}$)-sin2(α+$\frac{π}{6}$)=$\frac{7}{25}$,
∴sin(2α+$\frac{π}{12}$)=sin[2(α+$\frac{π}{6}$)-$\frac{π}{4}$]=$\frac{\sqrt{2}}{2}$sin2(α+$\frac{π}{6}$)-$\frac{\sqrt{2}}{2}$cos2(α+$\frac{π}{6}$)=$\frac{\sqrt{2}}{2}$×$\frac{24}{25}$-$\frac{\sqrt{2}}{2}$×$\frac{7}{25}$=$\frac{17\sqrt{2}}{50}$.
②当sin(α+$\frac{π}{6}$)=-$\frac{3}{5}$时,
∴sin2(α+$\frac{π}{6}$)=2sin(α+$\frac{π}{6}$)cos(α+$\frac{π}{6}$)=-$\frac{24}{25}$,
cos2(α+$\frac{π}{6}$)=cos2(α+$\frac{π}{6}$)-sin2(α+$\frac{π}{6}$)=$\frac{7}{25}$,
∴sin(2α+$\frac{π}{12}$)=sin[2(α+$\frac{π}{6}$)-$\frac{π}{4}$]=$\frac{\sqrt{2}}{2}$sin2(α+$\frac{π}{6}$)-$\frac{\sqrt{2}}{2}$cos2(α+$\frac{π}{6}$)=$\frac{\sqrt{2}}{2}$×(-$\frac{24}{25}$)-$\frac{\sqrt{2}}{2}$×$\frac{7}{25}$=-$\frac{31\sqrt{2}}{50}$.

点评 本题主要考查了三角函数恒等变换的应用,周期公式,余弦函数的图象和性质,考查了计算能力和分类讨论思想,考查了转化思想,属于基本知识的考查.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网