题目内容
3.sin 15° sin 30° sin 75° 的值等于( )| A. | $\frac{1}{4}$ | B. | $\frac{1}{8}$ | C. | $\frac{1}{16}$ | D. | -$\frac{1}{8}$ |
分析 由条件利用诱导公式、二倍角的正弦公式进行化简所给的式子,可得结果.
解答 解:sin 15° sin 30° sin 75°=sin 15°•$\frac{1}{2}$ cos15°=$\frac{1}{4}$sin30°=$\frac{1}{8}$,
故选:B.
点评 本题主要考查利用诱导公式、二倍角公式进行化简三角函数式,属于基础题.
练习册系列答案
相关题目
13.如图是某算法的程序框图,若输入的实数为3,则输出的x为( )

| A. | 5 | B. | 9 | C. | 17 | D. | 33 |
11.将容量为100的样本数据分为8个组,如下表:
则第3组的频率为( )
| 组号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 频数 | 10 | 13 | x | 14 | 15 | 13 | 12 | 9 |
| A. | 0.03 | B. | 0.07 | C. | 0.14 | D. | 0.21 |
18.满足a=4,b=3和A=45°的△ABC的个数为( )
| A. | 0个 | B. | 1个 | C. | 2个 | D. | 不确定 |
8.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{a}$=1(a>0)与双曲线$\frac{{x}^{2}}{{m}^{2}+2}$+$\frac{{y}^{2}}{{m}^{2}-4}$=1有相同的焦点,则椭圆的离心率为( )
| A. | $\frac{\sqrt{5}}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{\sqrt{6}}{3}$ | D. | $\frac{\sqrt{2}}{3}$ |
15.已知方程x2-4x+1=0的两根是两圆锥曲线的离心率,则这两圆锥曲线是( )
| A. | 双曲线、椭圆 | B. | 椭圆、抛物线 | C. | 双曲线、抛物线 | D. | 无法确定 |
4.某同学用“五点法”画函数f(x)=Asin(ωx+φ),(ω>0,|φ|<$\frac{π}{2}$)在某一个周期内的图象时,列表并填入了部分数据,如下表:
(1)请将上表数据补充完整,并直接写出函数f(x)的解析式;
(2)将y=f(x)图象上所有点向左平移动$\frac{π}{6}$个单位长度,得到y=g(x)图象,求y=g(x),x∈(-$\frac{π}{4}$,$\frac{π}{4}$)的单调增区间和值域.
| ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
| x | $\frac{π}{3}$ | $\frac{5π}{6}$ | |||
| f(x)=Asin(ωx+φ), | 0 | 5 | -5 | 0 |
(2)将y=f(x)图象上所有点向左平移动$\frac{π}{6}$个单位长度,得到y=g(x)图象,求y=g(x),x∈(-$\frac{π}{4}$,$\frac{π}{4}$)的单调增区间和值域.