题目内容
记(1+
)(1+
)…(1+
)的展开式中,x的系数为an,x2的系数为bn,其中x∈N*.
(1)求an,bn;
(2)是否存在常数p、q(p<q),使bn=
(1+
)(1+
),对n∈N*,n≥2恒成立?
| x |
| 2 |
| x |
| 22 |
| x |
| 2n |
(1)求an,bn;
(2)是否存在常数p、q(p<q),使bn=
| 1 |
| 3 |
| p |
| 2n |
| q |
| 2n |
考点:数列的求和,排列、组合的实际应用
专题:计算题,压轴题,等差数列与等比数列,二项式定理
分析:(1)由二项式定理得递推公式:an+1=an+
,bn+1=bn+
,从而求an=1-(
)n,bn=
-
+
;
(2)假设存在,则
(1+
)(1+
)=
-
+
,化简得p+q=-3,pq=2,从而解出p=-2,q=-1.
| 1 |
| 2n+1 |
| an |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2n |
| 1 |
| 3•22n-1 |
(2)假设存在,则
| 1 |
| 3 |
| p |
| 2n |
| q |
| 2n |
| 1 |
| 3 |
| 1 |
| 2n |
| 1 |
| 3•22n-1 |
解答:
解:(1)∵f(x,n)=(1+
)(1+
)…(1+
)=g(x,n)x3+bnx2+anx+1,
∴f(x,n+1)=f(x,n)(1+
),
∴g(x,n+1)x3+bn+1x2+an+1x+1=[g(x,n)x3+bnx2+anx+1](1+
)
比较x系数有:an+1=an+
,比较x2系数有:bn+1=bn+
,
又∵a1=
,b1=0;
∴an=
+(
)2+…+(
)n=1-(
)n;
∴bn+1=bn+
=bn+
-
;
∴bn=b1+(
+
+…+
)-(
+
+…+
)
=0+(
-
)-
(1-
)
=
-
+
;
∴an=1-(
)n,bn=
-
+
;
(2)若存在常数p.q(p<q),使bn=
(1+
)(1+
),对n∈N*,n≥2恒成立,
则有
(1+
)(1+
)=
-
+
,
即(1+
)(1+
)=1-3
+2(
)2,
则p+q=-3,pq=2,
解得p=-2,q=-1.
| x |
| 2 |
| x |
| 22 |
| x |
| 2n |
∴f(x,n+1)=f(x,n)(1+
| x |
| 2n+1 |
∴g(x,n+1)x3+bn+1x2+an+1x+1=[g(x,n)x3+bnx2+anx+1](1+
| x |
| 2n+1 |
比较x系数有:an+1=an+
| 1 |
| 2n+1 |
| an |
| 2n+1 |
又∵a1=
| 1 |
| 2 |
∴an=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴bn+1=bn+
| an |
| 2n+1 |
| 1 |
| 2n+1 |
| 1 |
| 22n+1 |
∴bn=b1+(
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n |
| 1 |
| 23 |
| 1 |
| 25 |
| 1 |
| 22n-1 |
=0+(
| 1 |
| 2 |
| 1 |
| 2n |
| 1 |
| 6 |
| 1 |
| 22n-2 |
=
| 1 |
| 3 |
| 1 |
| 2n |
| 1 |
| 3•22n-1 |
∴an=1-(
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2n |
| 1 |
| 3•22n-1 |
(2)若存在常数p.q(p<q),使bn=
| 1 |
| 3 |
| p |
| 2n |
| q |
| 2n |
则有
| 1 |
| 3 |
| p |
| 2n |
| q |
| 2n |
| 1 |
| 3 |
| 1 |
| 2n |
| 1 |
| 3•22n-1 |
即(1+
| p |
| 2n |
| q |
| 2n |
| 1 |
| 2n |
| 1 |
| 2n |
则p+q=-3,pq=2,
解得p=-2,q=-1.
点评:本题考查了二项式的分解及由递推公式求通项公式的方法,同时考查了拆项求和与公式法求和,属于压轴题.化简也比较困难,需要细心.
练习册系列答案
相关题目
| π |
| 12 |
A、y=2sin(x+
| ||||||
B、y=
| ||||||
C、y=
| ||||||
D、y=
|