题目内容

15.如图1,△ABC为等腰直角三角形,∠B=90°,将△ABC沿中位线DE翻折,得到如图2所示的空间图形(∠ADB为锐角).

(1)求证:BC⊥平面ABD;
(2)若BC=2,当三棱锥A-BCE的体积为$\frac{\sqrt{3}}{6}$时,求∠ABD的大小.

分析 (1)证明:DE⊥平面ADB,DE∥BC,即可证明BC⊥平面ABD;
(2)求出A到平面BCE的距离,即可求∠ABD的大小.

解答 (1)证明:由题意,DE∥BC,
∵DE⊥AD,DE⊥BD,AD∩BD=D,
∴DE⊥平面ADB,
∴BC⊥平面ABD;
(2)解:由题意,S△BCE=$\frac{1}{2}×2×1$=1,
设A到平面BCE的距离为h,则$\frac{1}{3}×1×h$=$\frac{\sqrt{3}}{6}$,∴h=$\frac{\sqrt{3}}{2}$
∵AD=1,∴sin∠ABD=$\frac{\sqrt{3}}{2}$,∴∠ABD=60°.

点评 本题考查线面垂直,考查三棱锥体积的计算,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网