题目内容
2.已知F1,F2是双曲线E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,点M在E上,MF1与x轴垂直,sin∠MF2F1=$\frac{1}{3}$,则E的离心率为( )| A. | 2 | B. | $\frac{3}{2}$ | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
分析 根据双曲线的定义,结合直角三角形的勾股定理建立方程关系进行求解即可.
解答
解:∵MF1与x轴垂直,sin∠MF2F1=$\frac{1}{3}$,
∴设MF1=m,则MF2=3m,
由双曲线的定义得3m-m=2a,即m=a,
在直角三角形MF2F1中,9m2-m2=4c2,即2m2=c2,
即2a2=c2,
则e=$\sqrt{2}$,
故选:D.
点评 本题主要考查双曲线离心率的计算,根据双曲线的定义结合直角三角形的勾股定理,结合双曲线离心率的定义是解决本题的关键.
练习册系列答案
相关题目
12.集合A={x|-2≤x≤3},B={x|x<-1},则A∩(∁RB)等于( )
| A. | {x|x>-1} | B. | {x|x≥-1} | C. | {x|-2≤x≤-1} | D. | {x|-1≤x≤3} |
2.若数列{an}满足an+12-an2=d(d为正常数,n∈N*),则称{an}为“等方差数列”.甲:数列{an}是等方差数列;乙:数列{an}是等差数列,则( )
| A. | 甲是乙的充分条件但不是必要条件 | |
| B. | 甲是乙的必要条件但不是充分条件 | |
| C. | 甲是乙的充要条件 | |
| D. | 甲既不是乙的充分条件也不是乙的必要条件 |