题目内容
已知α是第二象限的角,且cosα=-
,则tanα的值是( )
| 12 |
| 13 |
A、
| ||
B、-
| ||
C、
| ||
D、-
|
考点:同角三角函数间的基本关系
专题:三角函数的求值
分析:先判定sinα的符号,再利用同角三角函数的基本关系式即可得出.
解答:
解:∵α是第二象限的角,且cosα=-
,
∴sinα=
=
=
.
则tanα=
=-
.
故选:D.
| 12 |
| 13 |
∴sinα=
| 1-cos2α |
1-(
|
| 5 |
| 13 |
则tanα=
| sinα |
| cosα |
| 5 |
| 12 |
故选:D.
点评:本题考查了同角三角函数的基本关系式、三角函数值在各个象限的符号,属于基础题.
练习册系列答案
相关题目
已知函数f(x)=
,若关于x的方程f(f(x))=0有且仅有一个实数解,则实数a的取值范围是( )
|
| A、(-∞,0) |
| B、(-∞,0)∪(0,1) |
| C、(0,1) |
| D、(0,1)∪(1,+∞) |
对于函数y=f(x),以下说法正确的有( )
①y是x的函数;②对于不同的x值,y值也不同;③函数是一种对应,是多对一或一对一,不是一对多.
①y是x的函数;②对于不同的x值,y值也不同;③函数是一种对应,是多对一或一对一,不是一对多.
| A、①② | B、①③ | C、②③ | D、①②③ |
下列命题正确的是( )
| A、一条直线和一点确定一个平面 |
| B、两条相交直线确定一个平面 |
| C、三点确定一个平面 |
| D、三条平行直线确定一个平面 |
已知向量
=(ex+
,-x),
=(1,t)若函数f(x)=
•
在区间(-1,1)上存在增区间,则t的取值范围为( )
| a |
| x2 |
| 2 |
| b |
| a |
| b |
| A、(-∞,e) |
| B、(-∞,e) |
| C、(-∞,e+1) |
| D、(-∞,e+1) |
若双曲线
-
=1(a>0,b>0)的一个焦点到一条渐近线的距离等于焦距的
,则该双曲线的离心率是( )
| x2 |
| a2 |
| y2 |
| b2 |
| 1 |
| 3 |
A、
| ||||
B、
| ||||
| C、2 | ||||
D、
|
等差数列{an}的前n项和为sn,且s10=70,s20=60,则s30的值为( )
| A、-20 | B、30 |
| C、-30 | D、20 |