ÌâÄ¿ÄÚÈÝ
15£®ÒÑÖªº¯Êýf£¨x£©=sin£¨¦Øx-$\frac{¦Ð}{6}$£©£¨¦Ø£¾0£©£¬x¡ÊR£®£¬f£¨¦Á£©=-1£¬f£¨¦Â£©=0£¬Èô|¦Á-¦Â|µÄ×îСֵΪ$\frac{3¦Ð}{4}$£¬Ôòº¯Êýf£¨x£©µÄµ¥µ÷µÝÔöÇø¼äΪ£¨¡¡¡¡£©| A£® | [-$\frac{¦Ð}{2}$+2k¦Ð£¬¦Ð+2k¦Ð]£¬k¡ÊZ | B£® | [-$\frac{¦Ð}{2}$+3k¦Ð£¬¦Ð+3k¦Ð]£¬k¡ÊZ | ||
| C£® | [¦Ð+2k¦Ð£¬$\frac{5}{2}$¦Ð+2k¦Ð]£¬k¡ÊZ | D£® | [¦Ð+3k¦Ð£¬$\frac{5}{2}$¦Ð+3k¦Ð]£¬k¡ÊZ |
·ÖÎö ÓÉÌõ¼þÀûÓÃÕýÏÒº¯ÊýµÄÖÜÆÚÐÔÇóµÃ¦Ø£¬ÔÙÀûÓÃÕýÏÒº¯ÊýµÄµ¥µ÷ÐÔÇóµÃf£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä£®
½â´ð ½â£º¡ßº¯Êýf£¨x£©=sin£¨¦Øx-$\frac{¦Ð}{6}$£©£¨¦Ø£¾0£©£¬x¡ÊR£¬f£¨¦Á£©=-1£¬f£¨¦Â£©=0£¬Èô|¦Á-¦Â|µÄ×îСֵΪ$\frac{3¦Ð}{4}$£¬
Ôò$\frac{1}{4}$•$\frac{2¦Ð}{¦Ø}$=$\frac{3¦Ð}{4}$£¬¡à¦Ø=$\frac{2}{3}$£¬f£¨x£©=sin£¨$\frac{2}{3}$x-$\frac{¦Ð}{6}$£©£®
ÔÙ¸ù¾Ý2k¦Ð-$\frac{¦Ð}{2}$¡Ü$\frac{2}{3}$x-$\frac{¦Ð}{6}$¡Ü2k¦Ð+$\frac{¦Ð}{2}$£¬ÇóµÃ 3k¦Ð-$\frac{¦Ð}{2}$¡Üx¡Ü3k¦Ð+¦Ð£¬
¿ÉµÃº¯ÊýÔöÇø¼äΪ[-$\frac{¦Ð}{2}$+3k¦Ð£¬¦Ð+3k¦Ð]£¬k¡ÊZ£¬
¹ÊÑ¡£ºB£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÕýÏÒº¯ÊýµÄÖÜÆÚÐԺ͵¥µ÷ÐÔ£¬ÊôÓÚ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
4£®Ò»ÎïÌåµÄÔ˶¯·½³ÌÊÇs=$\frac{1}{2}$at2£¨aΪ³£Êý£©£¬Ôò¸ÃÎïÌåÔÚt=t0ʱµÄ˲ʱËÙ¶ÈÊÇ£¨¡¡¡¡£©
| A£® | at0 | B£® | -at0 | C£® | $\frac{1}{2}$at0 | D£® | 2at0 |