题目内容
6.某城市的供电部门规定,每户每月用电不超过200度时,收费标准为0.51元/度;当用电量超过200度,但不超过400度时,超过200度的部分按0.8元/度收费;当用电量超过400度时就停止供电.(1)写出每月电费y(元)与用电量x(度)之间的关系式;
(2)某居民用户某月缴电费182元,问该居民用了多少度电?
分析 (1)由题意,利用分段函数写出月用电量x(度)与每月电费y(元)之间的函数关系式;
(2)先确定用电量的大致的范围,再求用电量即可
解答 解:(1)由题意得,
y=$\left\{\begin{array}{l}{0.51x,0≤x≤200}\\{102+0.8(x-200),200<x≤400}\end{array}\right.$;
(2)∵102<182;
∴小李家在6月份的用电量在(200,400)之间,
故102+0.8(x-200)=182;
解得x=300(度);
故小李家在6月份的用电量为300度.
点评 本题考查了函数在实际问题中的应用,属于中档题.
练习册系列答案
相关题目
16.在平面直角坐标系xOy中,若曲线y=2x2+$\frac{a}{x}$(a是常数)过点P(-1,-30),则函数y=2x2+$\frac{a}{x}$在区间[1,4]的最大值与最小值的和为64.
17.已知菱形ABCD的边长为为4,∠ABC=$\frac{π}{3}$,向其内部随机投放一点P,则点P与菱形各顶点距离均大于1的概率为( )
| A. | 1-$\frac{\sqrt{3}π}{24}$ | B. | 1-$\frac{\sqrt{3}π}{12}$ | C. | $\frac{\sqrt{3}π}{24}$ | D. | $\frac{\sqrt{3}π}{12}$ |
15.已知函数f(x)=sin(ωx-$\frac{π}{6}$)(ω>0),x∈R.,f(α)=-1,f(β)=0,若|α-β|的最小值为$\frac{3π}{4}$,则函数f(x)的单调递增区间为( )
| A. | [-$\frac{π}{2}$+2kπ,π+2kπ],k∈Z | B. | [-$\frac{π}{2}$+3kπ,π+3kπ],k∈Z | ||
| C. | [π+2kπ,$\frac{5}{2}$π+2kπ],k∈Z | D. | [π+3kπ,$\frac{5}{2}$π+3kπ],k∈Z |