题目内容
16.下列四类函数中,具有性质“对任意的x>0,y>0,函数f(x)满足[f(x)]y=f(xy)”的是( )| A. | 指数函数 | B. | 对数函数 | C. | 一次函数 | D. | 余弦函数 |
分析 利用指数函数的性质及运算法则求解.
解答 解:在指数函数中,
y=ax满足(ax)y=axy,
故具有性质“对任意的x>0,y>0,函数f(x)满足[f(x)]y=f(xy)”的是指数函数.
故选:A.
点评 本题考查指数函数性质的应用,是基础题,解题时要认真审题,注意指数函数的性质及运算法则的合理运用.
练习册系列答案
相关题目
6.已知点F2,P分别为双曲线$\frac{{x}^{2}}{{a\;}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点与右支上的一点,O为坐标原点,若$\overrightarrow{OM}$=$\frac{1}{2}$($\overrightarrow{OP}$+$\overrightarrow{O{F}_{2}}$),${\overrightarrow{O{F}_{2}}}^{2}$=${\overrightarrow{{F}_{2}M}}^{2}$且2$\overrightarrow{O{F}_{2}}$•$\overrightarrow{{F}_{2}M}$=a2+b2,则该双曲线的离心率为( )
| A. | $\frac{\sqrt{3}+1}{2}$ | B. | $\frac{3}{2}$ | C. | $\sqrt{3}$ | D. | 2$\sqrt{3}$ |
11.若x,y满足$\left\{{\begin{array}{l}{x+y≥1}\\{mx-y≤0}\\{3x-2y+2≥0}\end{array}}\right.$且z=3x-y的最大值为2,则实数m的值为( )
| A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | 1 | D. | 2 |
8.直线$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=-3\sqrt{3}+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数)和圆x2+y2=16交于A,B两点,则线段AB的中点坐标为( )
| A. | (3,-3) | B. | $(-\sqrt{3},3)$ | C. | $(\sqrt{3},-3)$ | D. | $(3,-\sqrt{3})$ |
5.已知函数f(x)=$\frac{2lnx+{a}^{2}}{x}$+bx-2a(a∈R),其中b=${∫}_{0}^{\frac{π}{2}}$(2sin$\frac{t}{2}$•cos$\frac{t}{2}$)dt,若?x∈(1,2),使得f′(x)•x+f(x)>0成立,则实数a的取值范围为( )
| A. | (-∞,1) | B. | (0,1] | C. | (-∞,$\frac{5}{2}$) | D. | (-∞,$\frac{5}{2}$] |
6.若实数x,y在条件$\left\{\begin{array}{l}x+y≤4\\ x≥1\\ y≥m\end{array}\right.$下,所表示的平面区域面积为2,则$\frac{x+y+2}{x+1}$的最小值为( )
| A. | $\frac{1}{2}$ | B. | $\frac{3}{2}$ | C. | $\frac{2}{3}$ | D. | 2 |