题目内容

设数列{an}的前n项和Sn,已知a1=1,a2=2,a3=3,且(4n-3)Sn+1-(4n+5)Sn=αn+β(n∈N*),其中α,β为常数.
(1)求α,β的值;
(2)证明数列{an}为等差数列;
(3)设bn=a1a2+a2a3+…+anan+1,求和
(a2+a3)
b1)a1
+
(a3+a4)
b2)a2
+…+
(an+1+an+2)
bn)an
(n∈N*).
考点:数列的求和,等差关系的确定
专题:等差数列与等比数列
分析:(1)由已知条件令n=1,得α+β=-6,令n=2,得2α+β=-9,由此求出α=β=-3.
(2)(4n-3)Sn+1-(4n+5)Sn=-3n-3,推导出(8n+10)an+2=(4n+5)an+1+(4n+5)an+3,由此能证明数列{an}为等差数列.
(3)由an=n,得bn=
n(n+1)(n+2)
3
cn=
(an+1+an+2)
bn)an
=
1
2
•[
1
n(n+1)(-3)n-2
-
1
(n+1)(n+2)(-3)n-1
],由此利用裂项求和法能求出
(a2+a3)
b1)a1
+
(a3+a4)
b2)a2
+…+
(an+1+an+2)
bn)an
的和.
解答: (1)解:∵(4n-3)Sn+1-(4n+5)Sn=αn+β(n∈N*),
∴令n=1,则S2-9S1=α+β,即α+β=-6,
令n=2,则5S3-13S2=2α+β,即2α+β=-9,
解得α=β=-3.
(2)证明:∵(4n-3)Sn+1-(4n+5)Sn=-3n-3,
∴(4n-3)(Sn+1-Sn)=8Sn-3n-3,
∴(4n-3)an+1=8Sn-3n-3,①
∴(4n+1)an+2=8Sn+1-3(n+1)-3,②
②-①,得(4n+1)an+2=(4n+5)an+1-3,③
∴(4n+5)an+3=(4n+9)an+2-3,④
④-③,得(4n+5)an+3-(4n+1)an+2=(4n+9)an+2-(4n+5)an+1
∴(8n+10)an+2=(4n+5)an+1+(4n+5)an+3
即2an+2=an+1+an+3n,
且已知2a2=a1+a3
∴数列{an}为等差数列.
(3)解:∵a1=1,a2=2,a3=3,{an}为等差数列,
∴an=n,
∴bn=a1a2+a2a3+…+anan+1
=1•2+2•3+…+n(n+1)
=(12+22+32+…+n2)+(1+2+3+…+n)
=
n(n+1)(2n+1)
6
+
n(n+1)
2

=
n(n+1)(n+2)
3

cn=
(an+1+an+2)
bn)an
=
2n+3
n(n+1)(n+2)
3
•(-3)n

=
-(2n+3)
n(n+1)(n+2)(-3)n-1

=
1
2
•[
1
n(n+1)(-3)n-2
-
1
(n+1)(n+2)(-3)n-1
],
(a2+a3)
b1)a1
+
(a3+a4)
b2)a2
+…+
(an+1+an+2)
bn)an

=
1
2
[(
1
1•2•(-3)-1
-
1
2•3•(-3)0
)+(
1
2•3•(-3)0
-
1
3•4•(-3)
)+…+(
1
n(n+1)(-3)n-2
-
1
(n+1)(n+2)(-3)n-1
)]
=
1
2
[
1
1•2•(-3)-1
-
1
(n+1)(n+2)(-3)n-1
]
=-
3
4
-
1
2(n+1)(n+2)(-3)n-1
点评:本题考查等差数列的证明,考查数列的前n项和的求法,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网