题目内容
设数列{an}的前n项和Sn,已知a1=1,a2=2,a3=3,且(4n-3)Sn+1-(4n+5)Sn=αn+β(n∈N*),其中α,β为常数.
(1)求α,β的值;
(2)证明数列{an}为等差数列;
(3)设bn=a1a2+a2a3+…+anan+1,求和
+
+…+
(n∈N*).
(1)求α,β的值;
(2)证明数列{an}为等差数列;
(3)设bn=a1a2+a2a3+…+anan+1,求和
| (a2+a3) |
| b1(β)a1 |
| (a3+a4) |
| b2(β)a2 |
| (an+1+an+2) |
| bn(β)an |
考点:数列的求和,等差关系的确定
专题:等差数列与等比数列
分析:(1)由已知条件令n=1,得α+β=-6,令n=2,得2α+β=-9,由此求出α=β=-3.
(2)(4n-3)Sn+1-(4n+5)Sn=-3n-3,推导出(8n+10)an+2=(4n+5)an+1+(4n+5)an+3,由此能证明数列{an}为等差数列.
(3)由an=n,得bn=
,cn=
=
•[
-
],由此利用裂项求和法能求出
+
+…+
的和.
(2)(4n-3)Sn+1-(4n+5)Sn=-3n-3,推导出(8n+10)an+2=(4n+5)an+1+(4n+5)an+3,由此能证明数列{an}为等差数列.
(3)由an=n,得bn=
| n(n+1)(n+2) |
| 3 |
| (an+1+an+2) |
| bn(β)an |
| 1 |
| 2 |
| 1 |
| n(n+1)(-3)n-2 |
| 1 |
| (n+1)(n+2)(-3)n-1 |
| (a2+a3) |
| b1(β)a1 |
| (a3+a4) |
| b2(β)a2 |
| (an+1+an+2) |
| bn(β)an |
解答:
(1)解:∵(4n-3)Sn+1-(4n+5)Sn=αn+β(n∈N*),
∴令n=1,则S2-9S1=α+β,即α+β=-6,
令n=2,则5S3-13S2=2α+β,即2α+β=-9,
解得α=β=-3.
(2)证明:∵(4n-3)Sn+1-(4n+5)Sn=-3n-3,
∴(4n-3)(Sn+1-Sn)=8Sn-3n-3,
∴(4n-3)an+1=8Sn-3n-3,①
∴(4n+1)an+2=8Sn+1-3(n+1)-3,②
②-①,得(4n+1)an+2=(4n+5)an+1-3,③
∴(4n+5)an+3=(4n+9)an+2-3,④
④-③,得(4n+5)an+3-(4n+1)an+2=(4n+9)an+2-(4n+5)an+1,
∴(8n+10)an+2=(4n+5)an+1+(4n+5)an+3,
即2an+2=an+1+an+3n,
且已知2a2=a1+a3,
∴数列{an}为等差数列.
(3)解:∵a1=1,a2=2,a3=3,{an}为等差数列,
∴an=n,
∴bn=a1a2+a2a3+…+anan+1
=1•2+2•3+…+n(n+1)
=(12+22+32+…+n2)+(1+2+3+…+n)
=
+
=
,
cn=
=
=
=
•[
-
],
∴
+
+…+
=
[(
-
)+(
-
)+…+(
-
)]
=
[
-
]
=-
-
.
∴令n=1,则S2-9S1=α+β,即α+β=-6,
令n=2,则5S3-13S2=2α+β,即2α+β=-9,
解得α=β=-3.
(2)证明:∵(4n-3)Sn+1-(4n+5)Sn=-3n-3,
∴(4n-3)(Sn+1-Sn)=8Sn-3n-3,
∴(4n-3)an+1=8Sn-3n-3,①
∴(4n+1)an+2=8Sn+1-3(n+1)-3,②
②-①,得(4n+1)an+2=(4n+5)an+1-3,③
∴(4n+5)an+3=(4n+9)an+2-3,④
④-③,得(4n+5)an+3-(4n+1)an+2=(4n+9)an+2-(4n+5)an+1,
∴(8n+10)an+2=(4n+5)an+1+(4n+5)an+3,
即2an+2=an+1+an+3n,
且已知2a2=a1+a3,
∴数列{an}为等差数列.
(3)解:∵a1=1,a2=2,a3=3,{an}为等差数列,
∴an=n,
∴bn=a1a2+a2a3+…+anan+1
=1•2+2•3+…+n(n+1)
=(12+22+32+…+n2)+(1+2+3+…+n)
=
| n(n+1)(2n+1) |
| 6 |
| n(n+1) |
| 2 |
=
| n(n+1)(n+2) |
| 3 |
cn=
| (an+1+an+2) |
| bn(β)an |
| 2n+3 | ||
|
=
| -(2n+3) |
| n(n+1)(n+2)(-3)n-1 |
=
| 1 |
| 2 |
| 1 |
| n(n+1)(-3)n-2 |
| 1 |
| (n+1)(n+2)(-3)n-1 |
∴
| (a2+a3) |
| b1(β)a1 |
| (a3+a4) |
| b2(β)a2 |
| (an+1+an+2) |
| bn(β)an |
=
| 1 |
| 2 |
| 1 |
| 1•2•(-3)-1 |
| 1 |
| 2•3•(-3)0 |
| 1 |
| 2•3•(-3)0 |
| 1 |
| 3•4•(-3) |
| 1 |
| n(n+1)(-3)n-2 |
| 1 |
| (n+1)(n+2)(-3)n-1 |
=
| 1 |
| 2 |
| 1 |
| 1•2•(-3)-1 |
| 1 |
| (n+1)(n+2)(-3)n-1 |
=-
| 3 |
| 4 |
| 1 |
| 2(n+1)(n+2)(-3)n-1 |
点评:本题考查等差数列的证明,考查数列的前n项和的求法,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目