题目内容
若存在非零常数p,对任意的正整数n,an+12=anan+2+p,则称数列{an}是“T数列”.
(1)若数列{an}的前n项和Sn=n2(n∈N*),求证:{an}是“T数列”;
(2)设{an}是各项均不为0的“T数列”.
①若p<0,求证:{an}不是等差数列;
②若p>0,求证:当a1,a2,a3成等差数列时,{an}是等差数列.
(1)若数列{an}的前n项和Sn=n2(n∈N*),求证:{an}是“T数列”;
(2)设{an}是各项均不为0的“T数列”.
①若p<0,求证:{an}不是等差数列;
②若p>0,求证:当a1,a2,a3成等差数列时,{an}是等差数列.
考点:等差数列的性质,数列递推式
专题:等差数列与等比数列
分析:(1)由Sn=n2求出数列的通项公式,代入an+12=anan+2+p成立,说明数列{an}是“T数列”;
(2)①由反证法,若{an}是等差数列,代入an+12=anan+2+p得到小于0的p不存在,说明假设错误;
②由a1,a2,a3成等差数列,代入an+12=anan+2+p得到p=d2,由同一法说明{an}是等差数列.
(2)①由反证法,若{an}是等差数列,代入an+12=anan+2+p得到小于0的p不存在,说明假设错误;
②由a1,a2,a3成等差数列,代入an+12=anan+2+p得到p=d2,由同一法说明{an}是等差数列.
解答:
证明:(1)由Sn=n2,得an=2n-1,
an+12=(2n+1)2=4n2+4n+1,
anan+2=(2n-1)(2n+3)=4n2+4n-3,
∴an+12=anan+2+4,
∴{an}是“T数列”;
(2)①由an+12=anan+2+p,p<0,
若{an}是等差数列,则an+1=
,
代入an+12=anan+2+p,得an2+2anan+2+an+22=4anan+2+4p,
即(an-an+2)2=4p,
∵p<0,此式显然不成立,
∴{an}不是等差数列;
②由an+12=anan+2+p,得a22=a1a3+p,
当a1,a2,a3成等差数列时,
则(
)2=a1a3+p,即p=d2.
∴an+12=anan+2+d2.
假设{an}是公差为d的等差数列,
则an+1=an+d,an+2=an+2d,
代入an+12=anan+2+d2成立.
∴假设成立,即{an}是公差为d的等差数列.
an+12=(2n+1)2=4n2+4n+1,
anan+2=(2n-1)(2n+3)=4n2+4n-3,
∴an+12=anan+2+4,
∴{an}是“T数列”;
(2)①由an+12=anan+2+p,p<0,
若{an}是等差数列,则an+1=
| an+an+2 |
| 2 |
代入an+12=anan+2+p,得an2+2anan+2+an+22=4anan+2+4p,
即(an-an+2)2=4p,
∵p<0,此式显然不成立,
∴{an}不是等差数列;
②由an+12=anan+2+p,得a22=a1a3+p,
当a1,a2,a3成等差数列时,
则(
| a1+a3 |
| 2 |
∴an+12=anan+2+d2.
假设{an}是公差为d的等差数列,
则an+1=an+d,an+2=an+2d,
代入an+12=anan+2+d2成立.
∴假设成立,即{an}是公差为d的等差数列.
点评:本题考查了数列递推式,考查了等差数列的性质,解答此题的关键是对新定义的理解,是中档题.
练习册系列答案
相关题目
为得到函数y=sin(π-2x)的图象,可以将函数y=sinxcosx-
cos2x+
的图象( )
| 3 |
| ||
| 2 |
A、向左平移
| ||
B、向左平移
| ||
C、向右平移
| ||
D、向右平移
|