题目内容

17.已知向量$\overrightarrow{{A}{B}}$、$\overrightarrow{{A}C}$、$\overrightarrow{{A}D}$满足$\overrightarrow{{A}C}=\overrightarrow{{A}{B}}+\overrightarrow{{A}D}$,$|{\overrightarrow{{A}{B}}}|=2$,$|{\overrightarrow{{A}D}}|=1$,E、F分别是线段BC、CD的中点.若$\overrightarrow{D{E}}•\overrightarrow{{B}F}=-\frac{5}{4}$,则向量$\overrightarrow{{A}{B}}$与向量$\overrightarrow{{A}D}$的夹角为(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{π}{6}$D.$\frac{5π}{6}$

分析 由题意画出图形,结合$\overrightarrow{D{E}}•\overrightarrow{{B}F}=-\frac{5}{4}$求得$<\overrightarrow{CB},\overrightarrow{CD}>=\frac{π}{3}$,从而向量$\overrightarrow{{A}{B}}$与向量$\overrightarrow{{A}D}$的夹角为$\frac{π}{3}$.

解答 解:如图
$\overrightarrow{DE}•\overrightarrow{BF}$=$(\frac{1}{2}\overrightarrow{CB}-\overrightarrow{CD})(\frac{1}{2}\overrightarrow{CD}-\overrightarrow{CB})=\frac{5}{4}\overrightarrow{CB}•\overrightarrow{CD}-\frac{1}{2}{\overrightarrow{CD}^2}-\frac{1}{2}{\overrightarrow{CB}^2}=-\frac{5}{4}$.
由$|{\overrightarrow{CD}}|=|{\overrightarrow{AB}}|=2$,$|{\overrightarrow{BC}}|=|{\overrightarrow{AD}}|=1$,可得$\overrightarrow{CB}•\overrightarrow{CD}=1$
∴cos$<\overrightarrow{CB},\overrightarrow{CD}>$=$\frac{1}{2}$,则$<\overrightarrow{CB},\overrightarrow{CD}>=\frac{π}{3}$,
从而向量$\overrightarrow{{A}{B}}$与向量$\overrightarrow{{A}D}$的夹角为$\frac{π}{3}$.
故选:A.

点评 本题考查平面向量的数量积运算,考查了向量的加法、减法法则,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网